
Adam Mickiewicz University in Pozna«

Faculty of Mathematics and Computer Science

Algorithms for Automatic Grammatical

Error Correction

Algorytmy automatycznej poprawy

bª¦dów j¦zykowych

Roman Grundkiewicz

Supervisor:

Dr hab. Krzysztof Jassem

Auxiliary supervisor:

Dr Marcin Junczys-Dowmunt

A thesis for the degree of Doctor of Philosophy in Mathematics

in the �eld of Information Science

Praca doktorska na stopie« doktora nauk matematycznych

w zakresie informatyki

Pozna«, 2017

Abstract

This thesis explores the problem of automated grammatical error correction (GEC) in texts

written by non-native English speakers. Our main focus is the machine translation approach to

GEC. To overcome the data sparsity problem, we have developed a method for the automatic

extraction of potential errors from Wikipedia text edition histories, and created the largest

publicly available error annotated corpus so far. We investigate the usefulness of automatic

GEC-speci�c metrics on the basis of their correlation with human judgements by conducting

the �rst large-scale human evaluation study of automated GEC systems. Our proposed phrase-

based statistical machine translation (SMT) system achieved new state-of-the-art results on the

CoNLL-2014 test data � a standard benchmark for GEC provided during the Conference on

Natural Language Learning shared task in 2014. We have shown that parameter optimization

towards the task-speci�c evaluation metric and new GEC-adapted dense features are crucial for

building a reliable and e�ective SMT-based GEC system. We also examined two methods which

incorporate discriminative components into the generative SMT log-linear model. In the case

of the second method � the �rst reported application of sparse features to GEC � our results

signi�cantly improve over the previous state-of-the-art in the �eld.

Streszczenie

Niniejsza praca doktorska dotyczy problemu automatycznej poprawy bª¦dów j¦zykowych

w tekstach pisanych przez osoby ucz¡ce si¦ j¦zyka angielskiego jako j¦zyka obcego. Problem

ten zbadano za pomoc¡ metod tªumaczenia maszynowego. W celu zgromadzenia dodatkowych

danych, opracowano metod¦ automatycznej ekstrakcji potencjalnych bª¦dów j¦zykowych

z historii edycji tekstu oraz stworzono najwi¦kszy publicznie dost¦pny korpus bª¦dów. Zbadano

automatyczne miary ewaluacji stosowane w dziedzinie pod k¡tem ich korelacji z ocenami ludzkimi

poprzez wykonanie szczegóªowego studium ewaluacji systemów do automatycznej korekty tekstu.

Opracowany system, wykorzystuj¡cy metody statystycznego tªumaczenia maszynowego opartego

na frazach, osi¡gn¡ª najwy»sze publikowane do tej pory wyniki na popularnym zestawie testowym

CoNLL-2014 udost¦pnionym w ramach zadania organizowanego podczas Conference on Natural

Language Processing w 2014 roku. W pracy pokazano jak istotne s¡ wªa±ciwa optymalizacja

modelu na podstawie przyj¦tej miary ewaluacji oraz zastosowanie nowych cech g¦stych. Zbadano

równie» dwie metody integracji algorytmów dyskryminacyjnych do generatywnego systemu

tªumaczenia poprzez rozszerzenie modelu log-liniowego. Druga z metod � pierwsze zastosowanie

cech rzadkich do zadania korekty tekstu � w sposób istotny rozszerza aktualny stan wiedzy

w dziedzinie.

iii

Acknowledgements

First and foremost, I would like to gratefully thank to my auxiliary supervisor Dr Marcin Junczys-

Dowmunt for his help, support and motivation. He is a great mentor, teacher and colleague. I

am also grateful to my supervisor Professor Krzysztof Jassem for his valuable advices, prominent

patience and for giving me freedom to mature as a researcher. I thank to Dr Filip Grali«ski,

who is responsible for introducing me to natural language processing. Finally, I am grateful to

my girlfriend, my family and friends for their generous support.

Some parts of this thesis are based on the work partially founded by the Polish National

Science Centre (Grant Np. 2014/15/N/ST6/02330).

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Motivations . 1

1.2 Goals and hypotheses . 2

1.3 Contributions of the thesis . 2

1.4 Thesis outline . 3

1.5 Publication notes . 3

2 Grammatical Error Correction 5

2.1 Automated grammatical error correction . 5

2.1.1 Grammatical errors . 5

2.1.2 Errors of English learners . 6

2.1.3 Automatic error correction . 7

2.1.4 Di�culties in error correction . 7

2.2 Approaches to automated grammatical error correction 10

2.2.1 Rule-based methods . 10

2.2.2 Formal grammars . 12

2.2.3 Language modeling . 12

2.2.4 Classi�cation . 14

2.2.5 Statistical machine translation . 17

2.2.6 Combined approaches . 18

2.3 Shared tasks on GEC . 19

2.3.1 The HOO shared tasks . 19

2.3.2 The CoNLL shared tasks . 20

2.3.3 Other competitions . 21

2.4 Summary . 21

3 Data Sets 23

3.1 Error corpora and monolingual data . 23

3.1.1 Learner's corpora . 23

3.1.2 Arti�cial errors . 24

3.1.3 Text revision histories . 25

3.1.4 Social networks for language learners . 26

vii

Contents viii

3.1.5 Monolingual data . 26

3.2 The WikEd Error Corpus . 27

3.2.1 Extracting edits from Wikipedia . 27

3.2.2 Collecting corrective edits . 28

3.2.3 Edition �ltering . 29

3.2.4 Corpus format . 30

3.3 Summary . 30

4 Evaluation Metrics 31

4.1 Di�culties in evaluating GEC systems . 31

4.2 Evaluation metrics . 33

4.2.1 Standard metrics . 33

4.2.2 MaxMatch . 34

4.2.3 I-WAcc . 35

4.2.4 MT metrics . 35

4.3 Human evaluation of GEC systems . 36

4.3.1 Data collection . 37

4.3.2 Computing ranks . 42

4.3.3 Correlation with GEC metrics . 48

4.4 Summary . 51

5 Grammatical Error Correction Using Statistical Machine Translation 53

5.1 Statistical machine translation . 53

5.1.1 Log-linear model . 54

5.1.2 Model training and tuning . 54

5.2 Feature functions . 55

5.2.1 Stateless features . 55

5.2.2 Stateful features . 56

5.3 Training and test data . 58

5.3.1 Parallel data . 58

5.3.2 Monolingual data . 59

5.3.3 Error rates . 59

5.4 Experiments . 60

5.4.1 Tuning and optimization . 61

5.4.2 Experiments with additional features . 64

5.4.3 Increasing the size of language model . 65

5.4.4 Additional parallel data . 66

5.4.5 Incorporating additional out-of-domain data 66

5.5 Summary . 67

6 Discriminative Models for SMT-based Grammatical Error Correction 69

6.1 Discriminative models . 69

6.1.1 Discriminative classi�er . 70

6.1.2 Sparse features . 71

6.2 Feature templates . 72

6.2.1 Label-dependent features . 72

6.2.2 Sparse edit operations . 74

Contents ix

6.3 Experiments . 75

6.3.1 Multi-class discriminative classi�er . 75

6.3.2 Tuning sparse features . 77

6.3.3 Sparse feature sets . 78

6.3.4 Additional data . 79

6.4 Evaluation . 80

6.4.1 Comparison with other systems . 80

6.4.2 Upper-bound for the task . 81

6.5 Summary . 82

7 Summary 83

7.1 Contributions . 83

7.2 Future research . 84

A Error types in the NUCLE corpus 85

B Sparse edit operation weights 87

Abbreviations 88

Symbols 91

List of Tables 93

List of Figures 95

Bibliography 97

Chapter 1

Introduction

This thesis considers the problem of automated Grammatical Error Correction (GEC) in texts

written by non-native English speakers. The main goal of our research was to develop e�cient

algorithms and methods that can verify and improve grammatical correctness of text in a fully

automatic manner.

1.1 Motivations

In recent years, automated grammatical error correction has grown in popularity as a part of

the Natural Language Processing (NLP) �eld of research. One reason for this is a plurality

of possible practical applications. Simple spelling and grammar checking components are built

into numerous applications, such as text processors, email clients and web browsers, facilitating

the creation of error-free texts. More sophisticated solutions are incorporated into systems

for comprehensive proofreading and Computer-Assisted Language Learning (CALL). Moreover,

fully automated text correction is used as a part of pre- or postprocessing in various NLP tasks,

such as information retrieval, optical character recognition, automatic speech recognition, and

Machine Translation (MT) (Bassil and Alwani, 2012, Habash, 2008, Perez-Cortes et al., 2000).

Despite its popularity, the automated grammatical error correction is still far from being solved

completely (Bryant and Ng, 2015).

In this thesis, we deal with errors made by English as a Second Language (ESL) learners.

English is one of the most commonly-used languages; it is the third language in the world with

the largest number of native speakers, and the �rst one according to the number of non-native

speakers (Lewis et al., 2015). Also, most research on automatic error correction has studied errors

produced by second language (L2) learners. There are signi�cantly more tools and resources,

such as part-of-speech taggers and parsers, developed for English than for any other language.

Those allow NLP researchers to develop advanced algorithms and to produce comparable results.

One of the objectives of our research is to maintain the simplicity and clarity of created

models and to make them language-independent to the extent possible. Recently, state-of-the-

art GEC systems aimed to detect and correct the largest possible number of errors usually

combine various algorithms and approaches developed separately for speci�c error types (Felice

et al., 2014, Rozovskaya and Roth, 2014). This results in a high degree of complexity and makes

the results more di�cult to reproduce.

Our research is based on Statistical Machine Translation (SMT) approach. The modern

formulation of the phrase-based SMT model allows incorporating new algorithms, or even other

1

Chapter 1. Introduction 2

approaches, at various levels of processing in a clear way. Such an approach, in which grammat-

ical error correction is considered as a kind of machine translation, in this case from erroneous

English to correct English, turned out to be severely underresearched, which motivated us to

investigate further.

1.2 Goals and hypotheses

The main goal of this thesis is to develop e�cient algorithms and methods for automatic correc-

tion of grammatical errors of various types produced by English learners. We hypothesize that

the combination of generative phrase-based statistical machine translation models and discrimi-

native classi�cation components applied to automated grammatical error correction outperforms

any of these separately used methods.

To verify this the following tasks have been de�ned:

1. Collecting examples of naturally-occurring grammatical and usage errors as training data

for statistical data-driven approaches.

2. Choosing the most adequate automated evaluation metric that correlate best with human

judgement.

3. Building an e�cient automated grammatical error correction system based on phrase-based

statistical machine translation framework.

4. Examine methods for integrating discriminative components into the phrase-based SMT

model for automated grammatical error correction.

All these tasks are completed and described in the thesis.

1.3 Contributions of the thesis

This thesis gives a number of contributions to the �eld of automated grammatical error correction

at both, theoretical and engineering levels.

Firstly, we provide a review of historical and state-of-the-art methods in the GEC �eld.

Several approaches to automated error detection and correction are discussed and an exhaustive

assessment of each approach is provided. This part of the thesis may also serve as a review of

the �eld for a reader unfamiliar with GEC.

Secondly, we develop a method for the automatic extraction of potential errors from text

edition histories. Using it, we create the WikEd Error Corpus � a publicly-available large

corpus of corrective edits extracted from Wikipedia revisions.

Next, we present the �rst large-scale human evaluation of automated GEC systems. We

use the produced system rankings to evaluate standard metrics for GEC and we show that the

commonly used metric M2 is well correlated with human judgements, and thus a reasonable

choice as an evaluation metric.

Next, we reinvestigate the machine translation approach to automated grammatical error

correction. New strong baselines for the �eld are created using SMT systems with proper opti-

mization procedures and new task-speci�c dense features.

Chapter 1. Introduction 3

We examine two di�erent methods that combine classi�ers and SMT-based GEC systems.

We incorporate discriminative components into the generative SMT model as a single feature

function and by using task-speci�c sparse features.

Finally, the created WikEd Error Corpus1, developed tools and data collected in the human

evaluation study2, and the SMT-based GEC systems3 have been made publicly available and

should be useful for other researchers.

1.4 Thesis outline

The structure of the thesis is as follows. In Chapter 2 we introduce automated grammatical

error correction as a �eld of natural language processing. The scope of the research is de�ned

and state-of-the-art approaches are described.

Next, in Chapter 3, we introduce applied data sets, including monolingual and error corpora.

We also present a method for extracting naturally-occurring error examples from text revision

histories.

Our choice of evaluation metrics and results of the �rst large-scale human evaluation of GEC

systems are described in Chapter 4.

In Chapter 5, we describe a GEC system based on the phrase-based statistical machine

translation models. An e�ective optimization procedure according to the chosen evaluation

metrics and new task-speci�c features are presented.

Two di�erent methods incorporating discriminative components into the generative phrase-

based SMT model are studied in Chapter 6. We describe the integration of a cost-sensitive

multi-class logistic discriminative classi�er with label-dependent features, and sparse features

derived from correction patterns.

We conclude in Chapter 7 by summarizing the key achievements and results, and formulating

open questions for future work.

1.5 Publication notes

Some parts of this dissertation presents extended research described in the following publications:

• Grundkiewicz, R. (2013a). Automatic extraction of Polish language errors from text edition

history. In Text, Speech, and Dialogue � 16th International Conference, TSD 2013, volume

8082 of Lecture Notes in Computer Science, pages 129�136, Plzen, Czech. Springer Berlin

Heidelberg

• Grundkiewicz, R. (2013b). Errano: a tool for semi-automatic annotation of language errors.

In Proceedings of the 6th Language & Technology Conference, pages 309�313, Poznan,

Poland

• Junczys-Dowmunt, M. and Grundkiewicz, R. (2014). The AMU system in the CoNLL-

2014 shared task: Grammatical error correction by data-intensive and feature-rich statis-

tical machine translation. In Proceedings of the Eighteenth Conference on Computational

1https://github.com/snukky/wikiedits
2https://github.com/grammatical/evaluation
3https://github.com/grammatical/baselines-emnlp2016

https://github.com/snukky/wikiedits
https://github.com/grammatical/evaluation
https://github.com/grammatical/baselines-emnlp2016

Chapter 1. Introduction 4

Natural Language Learning: Shared Task, pages 25�33, Baltimore, Maryland. Association

for Computational Linguistics

• Grundkiewicz, R. and Junczys-Dowmunt, M. (2014). The WikEd error corpus: A cor-

pus of corrective wikipedia edits and its application to grammatical error correction. In

Przepiórkowski, A. and Ogrodniczuk, M., editors, Advances in Natural Language Process-

ing � Lecture Notes in Computer Science, volume 8686, pages 478�490. Springer

• Grundkiewicz, R., Junczys-Dowmunt, M., and Gillian, E. (2015). Human evaluation of

grammatical error correction systems. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 461�470, Lisbon, Portugal. Association for

Computational Linguistics

• Grundkiewicz, R. and Junczys-Dowmunt, M. (2015). Grammatical error correction with

(almost) no linguistic knowledge. In Proceedings of the 7th Language & Technology Con-

ference, pages 240�245, Poznan, Poland

• Junczys-Dowmunt, M. and Grundkiewicz, R. (2016). Phrase-based machine translation

is state-of-the-art for automatic grammatical error correction. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 1546�1556, Austin,

Texas. Association for Computational Linguistics

• Grundkiewicz, R. and Junczys-Dowmunt, M. (2017). Reinvestigating the classi�ation ap-

proach to the article and preposition error correction. Lecture Notes in Arti�cial In-

telligence, Springer Verlag, Human Language Technologies as a Challenge for Computer

Science and Linguistics. To appear in the LTC 2015 post-conference volume

Chapter 2

Grammatical Error Correction

In this chapter we provide the scienti�c background for the rest of the thesis. Firstly, in Sec-

tion 2.1, we introduce the notions of grammatical errors and automated error correction with

focus on ESL errors. We also explain why GEC is a challenging task and where the di�culties

come from. Section 2.2 describes in detail a number of approaches explored for the GEC �eld,

and includes reviews of the most remarkable historical and state-of-the-art results presented

in the literature. Then, in Section 2.3, we present the shared tasks dedicated to automated

grammatical error correction, which have been organised in the past. We lay emphasis on the

CoNLL-2014 shared task (Ng et al., 2014) as our experiments lie in the scope de�ned by this

competition. The chapter is summarized in Section 2.4.

2.1 Automated grammatical error correction

The term grammatical error is ambiguous. It varies among languages as each language con-

sists of unique grammar rules which, when violated, can cause grammatical errors. Non-native

speakers are in�uenced by their �rst language (L1) and thus produce di�erent errors than na-

tive speakers (Selinker and Gass, 1992). Some linguistic structures are misused depending on

whether the writing style is formal or informal. The notion of grammatical error also varies

among authors: linguists often form their de�nitions on linguistic source of errors (Ellis, 1994),

while NLP researchers focus on a context or knowledge required for the proper detection and

correction of the error (Kukich, 1992).

2.1.1 Grammatical errors

Grammatical errors are only one group of language errors (or linguistic errors). A general

classi�cation of language errors that �ts to a variety of NLP applications has been proposed by

Naber (2003) and consists of four categories:

• Spelling errors (or misspellings) result in words not belonging to the language. These

are mainly mechanical errors that are also called non-word errors or isolated errors as no

context information is needed to �nd them. Commonly-used spell checking techniques,

such as �nite state automata (Kukich, 1992) can detect such errors e�ectively.

• Grammatical errors violate grammar rules of the language. Grammar is de�ned as a set

of systematic rules through which words and sentences are assembled to convey meaning

5

Chapter 2. Grammatical Error Correction 6

(Fraser and Hodson, 1978). This covers morphology, syntax and phonology of the language.

These are mostly real-word errors, i.e. errors that consist in the wrong use of words that

are a part of the language and meaningful, but in general they are not intended in the

given context and violate grammar rules. Grammatical errors require an analysis of the

surrounding context to be detected and corrected.

Context-sensitive spelling errors (Golding, 1995), i.e. spelling errors that originate from

accidental usage of a word that belongs to the language, are also included in this group as

they often appear as words with changed part-of-speech category.

• Stylistic errors (or usage errors) do not violate the syntax or morphology of a language,

but con�ict with the standard norm commonly accepted for a written discourse of speci�c

type. Fraser and Hodson (1978) distinguish usage from grammar de�ning the former as

alternative ways of writing acquired particular social status. Usage errors may be due to

the use of uncommon words, overcomplicated structures, word repetitions or colloquial

vocabulary.

• Semantic errors produce statements that are false according to general knowledge about

the world. A wide context information, often in the form of extensive external knowledge,

is required to correct such errors, which makes the task very di�cult using the modern

NLP methods. In fact, current solutions for automatic text correction rarely go beyond

the scope of a sentence.

The notion of grammatical error used in NLP usually incorporates both grammatical and

stylistic errors from the classi�cation above. As pointed out by Leacock et al. (2010), a subset

of spelling errors is often considered as grammatical errors, next to morphology, syntax and

usage errors. In particular, these are spelling errors having source in the incomplete knowledge

of morphology, such as incorrect word forms (e.g. he writed → he wrote), or contextual spelling

errors (e.g. form → from).

2.1.2 Errors of English learners

As mentioned earlier, linguistic errors produced by native and non-native language users are

typically di�erent (Ellis, 1994). For example, a number of English learner errors, such as tense

or modal confusions, or confusions of prepositions and articles, would be very rarely made

by native English speakers. Some expressions and constructions applied by second language

(L2) learners, even though acceptable for native speakers, are not likely to be used by them.

Moreover, non-native speakers make errors more frequently. The majority of research in the �eld

of grammatical error correction concerns errors made by non-native English speakers (Leacock

et al., 2010).

Recently, NLP methods for ESL error correction are commonly evaluated on error-annotated

corpora. A set of grammatical errors that is aimed to be detected and corrected is thus well-

determined by annotations made in such corpora. As both corpora and tasks vary, this con-

tributes to the diversity of language errors that are considered to be grammatical errors by the

NLP community. In fact, if the goal is the correction of a variety of grammatical errors and a

corpus-based evaluation is applied, NLP researchers do not have to reformulate the notion of

the grammatical error as it is already de�ned by the task associated with the error corpus.

Chapter 2. Grammatical Error Correction 7

Detection of
errors

Generation of
candidate corrections

Ranking
candidates

Displaying
candidates to the user
(an interactive system)

Selecting
the best correction

(an automatic system)

Figure 2.1: Automatic error correction process.

The set of grammatical errors that we attempt to correct in this work consists of all error types

present in the NUCLE learner corpus (Section 3.1 in Chapter 3 provides a detailed description of

this data set). Appendix A contains error categories annotated in the corpus and error examples.

2.1.3 Automatic error correction

Automatic error correction is the process that aims to �nd and correct linguistic errors in texts

in an automatic manner. It is often split into error detection and error correction. Kukich (1992)

distinguishes four phases of the task as presented in Figure 2.1.

Error detection is the process of �nding the position and boundaries of an incorrectly used

word or words in a text fragment. A undetected error cannot be corrected. If an error is detected,

the next step is the generation of correction candidates. The third step is scoring and ranking

of correction candidates starting from the most probable ones. The three phases of the process

may be collapsed to a single part in modern systems, but they are usually distinguishable. In

interactive systems the ranked list of candidate corrections is presented to the user. In a fully

automated GEC systems, the error is replaced with the best correction candidate. GEC methods

may vary in each phase. The change at the earlier phase has an impact on further stages and,

�nally, on the correction result.

Later in this work, we will use the term error correction to denote the whole correction

process, including error detection. The distinction between detection and correction will be

clearly stated when needed.

2.1.4 Di�culties in error correction

There are two sources of di�culties for automatic grammatical error correction: the hard-to-code

linguistic nature of grammatical errors and a high level of technical complexity.

Natural language is ambiguous, which has an impact on the nature of linguistic errors. The

most signi�cant aspects that make the GEC task challenging are the following:

• Multiple corrections for a single error are possible. Many errors can be corrected in several

ways, for example:

Chapter 2. Grammatical Error Correction 8

Above all, life is more important than
[
secret → secrets|secrecy|a secret

]
.

Alternative corrections are possible due to the lack of context required to decide which

correction is the most accurate, or due to the ambiguity of a language. For instance, the

choice of many articles or determiners depends on personal preferences of a proofreader.

Various corrections may require changes in di�erent parts of a sentence, e.g. a subject-verb

agreement error can be corrected by modifying either the subject or the verb.

Ambiguous corrections are a handicap for automatic evaluation methods, which usually

compare the system output against the human annotator's choice (evaluation di�culties

are discussed in Section 4.1).

• Grammatical errors occur with a low frequency. Error frequency is usually measured

compared to the total number of sentences, total number of words, or the number of words

that are speci�c to a given error type.

Many sentences do not include any spelling, grammatical or stylistic errors, and the vast

majority of words in a text are used correctly. The number of sentences that contain

one or more errors varies between 35% and 85% depending on ESL corpus and dataset

(Bryant and Ng, 2015, Dahlmeier et al., 2013, Yannakoudakis et al., 2011). The number of

incorrectly used words is ca. 6�15%. Due to the low error rates a GEC system has to be very

cautious, so that it would not introduce new errors into correct text fragments. Moreover,

some error types occur with low frequency in text data, which make them di�cult to learn

for data-hungry statistical approaches.

• Error types and error distribution highly vary among writers and data sets. Error corpora

are created from texts written by ESL learners with various levels of language pro�ciency

and various native languages (Rozovskaya and Roth, 2010a). Moreover, as some corrections

might be optional or performed in di�erent ways, the annotations and their numbers vary

among annotators for the same data set (Bryant and Ng, 2015). This is especially true

for stylistic errors. For example, only two of ten annotators �agged the word execute as

incorrect in the following sentence1:

A good law should be clear and easy to
[
execute → enforce

]
.

The annotation guidelines can also in�uence the annotator's choices (Sakaguchi et al.,

2016).

These ambiguity issues pose challenges not only for evaluation, but also for the develop-

ment of GEC systems. Statistical approaches, such as classi�cation or statistical machine

translation, are highly dependent on the distribution in the training data. Systems are

often tuned on development sets with prede�ned error frequency and distribution. If, for

instance, the error frequency in the test set is signi�cantly lower than in the tuning set,

the GEC system will be prone to produce many false positives, and vice versa, if error

frequency in the test set is much higher than in the tuning set, many errors may be missed

by such a system (Cahill et al., 2013, Rozovskaya and Roth, 2010c).

• Some errors depend on distinct word choices. An existence of a particular word may

in�uence the choice of a another long-distance word. A particular word in the sentence

1The example comes from the CoNLL-2014 Test Set annotated by ten annotators. More detailed description
of the dataset is presented in Chapter 3, Section 3.1.

Chapter 2. Grammatical Error Correction 9

might dictate the word choice much later, especially in complex sentences that consist of

multiple clauses. The detection of the error might require the analysis of a wide context.

Subject-verb agreement errors are the example:

The scent of red sweet apples and cinnamon sticks
[
are → is

]
present in the wine.

The knowledge of sentence syntax and/or dependency relationships between words from

a syntax or dependency parser might be useful to detect such an error. The context

that has to be taken into consideration is even broader when the error is related to word

choices in preceding sentences. A number of methods, e.g. statistical machine translation,

limit the processing to a single sentence, which means that the detection and correction of

inter-sentence errors is unlikely by design.

• More than one error of any type might occur in a sentence. Multiple errors in a sentence

may lead to the occurrence of an error in a context used in the detection of another error.

This problem is solved by correcting contexts on the �y in the GEC processing or training

on the context including erroneous constructions instead. This is usually not the case if

systems are trained on native texts that are mostly error-free.

This phenomenon also indicates that in the case when di�erent components are used to

detect di�erent error types separately, a method combining these corrections is advisable.

• One erroneous word may manifest multiple errors. For instance, the incorrect form of the

word may be due to both spelling and subject-verb agreement error, e.g.:

An example is water, which is a good renewable
[
resuorces → resource

]
and is plentiful.

The successful correction of the spelling error may result in a word that still contains the

grammatical error (e.g. resuorces → resources).

Automated grammatical error correction also poses a number of challenges as a natural lan-

guage processing task due to the high technical complexity. Many high-performance systems use

components that execute many NLP subtasks, such as sentence segmentation, word tokeniza-

tion, POS tagging, chunking and shallow parsing, named entity recognition, or spelling error

correction. That complexity might be a source of the following issues:

• Most NLP tools assume error-free input texts. As many of these tools are developed on

correct texts, their performance is often suboptimal on texts with language errors.

• The lower the e�ciency of each system's component, the lower the �nal performance. Even

tools executing well-studied tasks, such as part-of-speech tagging, do not achieve perfect

results. Moreover, the limitations of individual components stack over pipeline processing.

For example, incorrectly assigned POS tags have a negative impact on the performance of

shallow parsing, etc.

• Statistical NLP tools can hide some errors or make them more di�cult to detect. For

instance, if a statistical POS tagger has been trained only on error-free data, it might

assign an incorrect part-of-speech tag to words that cause real-word errors.

• NLP tools are complex on their own and this causes additional di�culties in their integra-

tion. For instance, tools developed in di�erent NLP centres often use di�erent tokenization

schemas or tag sets.

Chapter 2. Grammatical Error Correction 10

Methods for automatic
text correction

Non-word
errors

Dictionary
searching

Word
models

Real-word
errors

Rule-based
methods

Constraint
grammars

Statistical
methods

Language
modeling

Classi�cation
algorithms

Machine
translation

Figure 2.2: Classi�cation of text correction approaches based on error types.

More challenges in grammatical error correction concern the evaluation of GEC systems.

Such issues are discussed in Section 4.1.

2.2 Approaches to automated grammatical error correction

In last decades, a number of approaches have been proposed for automated grammatical error

correction. The general classi�cation of the most successful developed methods is presented in

Figure 2.2. It distinguishes methods for non-word and real-word errors (Section 2.1.1). Standard

techniques for detection of isolated errors are based on dictionary lookup or analysis of character

n-grams (Kukich, 1992). As non-word errors are not targeted in this thesis, these techniques are

not discussed in the subsequent parts of the chapter.

Real-word errors can be corrected using rules that take into account the context around an

error. Methods that are based mostly on manually created rules are called rule-based meth-

ods. Grammar-based methods are built on top of formal grammars and use modi�ed parsing

algorithms to detect and correct grammatical errors Leacock et al. (2010). Rules can be also

acquired transparently from statistical data-driven methods. The most commonly used machine

learning approaches to GEC are language modeling, classi�cation algorithms and statistical ma-

chine translation. It should be noted that some non-word errors can also be e�ectively detected

and corrected by statistical methods commonly used for real-word errors if they occur frequently

enough in training data.

In the rest of this section, we describe selected approaches, including the most impactful

historical methods and the state-of-the-art solutions, which mostly follow statistical and/or

hybrid approaches.

2.2.1 Rule-based methods

The �rst grammar checking tools, such as the Unix Writer's Workbench (MacDonald et al.,

1982) or EPISTLE and CRITIQUE (Heidorn et al., 1982), used hand-crafted rules and pattern-

matching techniques. The most widely used grammar checker nowadays from Microsoft Word

Chapter 2. Grammatical Error Correction 11

<rule name="Agreement error: past participle without 'have'">

<pattern>

<token regexp="yes">([wc]|sh)ould|might|must</token><marker>

<token postag="VBN"><exception postag="VB[PD]" postag_regexp="yes"/>

</token></marker>

</pattern>

<message>

Did you mean <suggestion>have <match no="2"/></suggestion> or

<suggestion><match no="2" postag="VB"/></suggestion>?

</message>

<short>Possible grammatical error</short>

<example correction="have been|be">

You could <marker>been</marker> from Russia.

</example>

<example>They should break away from Russia.</example>

</rule>

Figure 2.3: Example of a Language Tool error-matching rule.

text editor (Heidorn, 2000) relies mostly on a rule-based approach. Another recent example is

LanguageTool2 (Miªkowski, 2010), which has been initially developed by Naber (2003).

Modern rule-based GEC systems commonly support such features as:

• Pattern matching with regular expressions.

• Alternative correction suggestions.

• Analysis of the input text at several linguistic levels providing results of morphosyntac-

tic analysis, noun-phrase chunking (Miªkowski, 2010) or dependency parsing (Mozgovoy,

2011).

• Basic logic and set operations on patterns and rules, e.g. the negation, union or intersection

of rules.

• Generation of suggestions with synthesizer of in�ected forms.

An example of the agreement error detection rule from LanguageTool is presented in Fig-

ure 2.3. The rule matches a past participle (e.g. been) not preceded by the auxiliary verb have

but preceded by other auxiliary verbs, such as would or should, and suggests two alternative

corrections (e.g. have been and be).

Although error-matching rules are usually manually created from frequently observed pat-

terns of errors in text corpora (Andersen et al., 2013, Miªkowski, 2010), these can be also ac-

quired by automatic or semi-automatic methods. For example, Miªkowski (2009) proposed to

use a transformation-based learning algorithm to automatically acquire symbolic rules for Lan-

guageTool.

Since the 90s, in line with general trends in NLP, the rule-based approach has been re-

placed by statistical and data-driven methods due to the increasing availability of annotated

corpora. Despite this, rule-based components may still be present in GEC systems using com-

bined approaches. For example, Felice et al. (2014) apply a rule-based module suggesting speci�c

2https://www.languagetool.org/

https://www.languagetool.org/

Chapter 2. Grammatical Error Correction 12

corrections for frequent errors from the Self-Assessment and Tutoring (SAT) system (Andersen

et al., 2013) as the �rst step in their hybrid system. Wu et al. (2014) and Lee and Lee (2014)

attempt to correct subject-verb agreement errors using rule-based methods and apply di�erent

approaches for other errors.

The main advantages of the rule-based approach are (Naber, 2003):

• Errors for which context is clearly de�ned are easy to detect and correct regardless of their

frequency in the error corpora.

• Rules can be created incrementally. A rule-based grammar checker works immediately

after the �rst rule is implemented.

• Easy con�guration of the system: each rule has its own description and error message, and

moreover, each rule can be turn on or turn o� individually.

On the other hand, the disadvantages of this approach include:

• Development of hand-crafted rules is costly and time-consuming, and usually needs to be

carried out by linguist specialists.

• High language-dependency as rules need to be developed for each language separately.

• Di�culty of tackling open-class errors, for example in�ectional errors in highly in�ectional

languages.

2.2.2 Formal grammars

In the past, researchers attempted to build rules on top of computational grammars in so-

called grammar-based approach. A grammar needs to be error-tolerant to parse a sentence with

grammatical errors. Several techniques have been proposed to meet this requirement (Leacock

et al., 2010, Chapter 2).

For example, Douglas and Dale (1992) introduce relaxations into the grammar by making

certain agreement constraints optional. Dini and Malnati (1993) over-generate parse trees that

violate grammatical constraints and rank them in order from the highest number of satis�ed

constraints. Holan et al. (1997) locate the source of the error using an algorithm that compares

available parse trees with inconsistencies. The grammar checker of Park et al. (1997) is based

on error-rules that are applied if all standard grammar rules fail. A similar approach is based on

rules that allow to parse speci�c erroneous constructions (so-called mal-rules) in the input text

(Bender et al., 2004, Schneider and McCoy, 1998).

As noted by Crysmann et al. (2008), since coverage of developed grammars is never ex-

haustive, GEC systems based on a formal grammar also have di�culty to distinguish between

non-covered grammatical and truly ungrammatical sentences. Conversely, since grammars often

overgenerate, a successful parse does not guarantee well-formedness either.

2.2.3 Language modeling

A statistical (or probabilistic) language model (LM) is a probability distribution over a sequence

of characters or words (Manning et al., 2008). LM assigns probability P (t1, . . . , tm) to the

sequence of words t1, . . . , tm of length m, which attempts to re�ect how frequently and how

Chapter 2. Grammatical Error Correction 13

probably the given sequence occurs in the language. Probabilities are estimated on a large

corpus, which ideally consists of error-free texts.

The most popular statistical language models are n-gram language models (Shannon, 1951).

An n-gram is a sequence of tokens t1, . . . , tn of length n. If n is equal to 1, 2 or 3, an n-gram

is called unigram, bigram or trigram, respectively. An n-gram language model estimates the

probability p of a sequence of tokens T based on the previous n − 1 tokens using n-th order

Markov property (Markov, 1960):

p(T) ≈
|T |∏
i=1

p(ti|ti, . . . , ti−n+1).

In a naive approach, an error is detected if a very improbable word within a sentence (ac-

cording to the language model) is found. The correction is made by a substitution of the �agged

error with a word that increases the overall probability of the sentence. Usually the correction

candidate is in a short edit distance to the erroneous word. Language models allow to detect

both non-word and real-word errors.

One of the �rst attempts to use language models for GEC is described by Atwell (Atwell,

1987, Atwell and Elliot, 1987). The author used a part-of-speech tag language model to �ag

unlikely POS tag transitions in the input text and proposed several methods to determine when

an error should be diagnosed. He experimented with using manually-created error-likelihoods

which measure how frequently each tag pair occurs in an error, �nding an optimal threshold for

low absolute likelihoods for POS tags, or adding error-tags to lexical entries that, when used,

indicate the occurrence of an error. Chodorow and Leacock (2000) use mutual information and

Chi-square statistics to determine which sequences of POS tags and function words are unusually

rare with regard to a large well-formed corpus, and therefore are likely to be ungrammatical in

English. A language model based on a generative statistical parser is used by Turner and

Charniak (2007) to determine the most likely grammatical determiner to be used in a noun

phrase. Stehouwer and van Zaanen (2009) investigate various language models to determine

which word, from a prede�ned set of confusable words3, is most probable in a given context. The

proposed systems use a uniform or weighted linear combination of di�erent n-grams around the

confusable word and di�erent back-o� strategies to counteract the missing word sequences in the

trigram language model. More recent research of Hdez and Calvo (2014) focuses on examining

a language model based on syntactic trigrams and bigrams extracted from dependency trees

generated from English Wikipedia.

The e�ectiveness of a probabilistic language model highly depends on size and quality of

text corpora used to estimate probabilities (Liu and Curran, 2006). A number of researchers

(Elghafari et al., 2010, Gamon and Leacock, 2010, Gamon et al., 2009, Hermet et al., 2008,

Tetreault and Chodorow, 2009, Yi et al., 2008) decided to use n-gram counts extracted from

search engines as a language model approximation. Commonly used sources of n-gram data sets

are Microsoft Web N-gram Services (Wang et al., 2010) and Google Web 1T N-gram Corpus

(Brants and Franz, 2006).

Language models are commonly used in GEC systems combined with other methods. In

recent hybrid systems, the main purpose of a language model is to rank or validate correction

decisions (Felice et al., 2014, Lee and Lee, 2014, Wu et al., 2014). LMs are also integral parts of

GEC systems based on statistical machine translation approach.

3The notion of a confusion set will be de�ned in the next section.

Chapter 2. Grammatical Error Correction 14

The most signi�cant advantages of the LM-based approach for GEC are as follows:

• Language models need only plain text resources that are widely available and plentiful

today.

• Language models can be easily combined with other methods.

On the other hand, the disadvantages of this approach include:

• N -grams that do not occur in training data and thus have zero probability have to be

handled with smoothing methods.

• The distinction between rare n-grams and ungrammatical n-grams has to be modeled.

2.2.4 Classi�cation

The basis for the classi�cation approach are supervised machine learning methods. Error cor-

rection is seen as a lexical disambiguation task or word selection task (Golding, 1995, Roth,

1998). The ambiguity between correction candidates is modeled by pre-de�ned confusion sets

(or candidate sets) containing commonly confused words.

about
at about
by at
for by
from for
in from

A study of New York University in 2010 shown that patients (. . .)

on of
to on
with to

with

Figure 2.4: Example of classi�cation approach for preposition correction. The confusion set
consists of ten most frequent prepositions: {about, at, by, for, from, in, of, on, to, with}. Source

words are underlined.

Figure 2.4 illustrates the classi�cation task given a confusion set that consists of ten most

frequent prepositions {about, at, by, for, from, in, of, on, to, with}. A word that belongs

to the confusion set and that has been encountered in the input text is called a source word

(prepositions of and in in the example). The task of the pre-trained classi�er is to decide for

each source word, which of the �nite number of possible alternatives from the candidate set is the

most accurate in the given context. The context is represented by neighbouring words from the

sentence in which the source word appears, and modeled by context features. The classi�cation

algorithm is trained on a set of labeled examples extracted from an error-annotated corpus.

Applications of classi�ers to GEC vary in three aspects: the selection of confusion sets, the

design of context features, and the choice of classi�cation algorithms.

Chapter 2. Grammatical Error Correction 15

Confusion sets The classi�cation approach has been initially applied to context-sensitive

spelling error (CSS) correction (Golding, 1995, Golding and Roth, 1996, 1999, Golding and

Schabes, 1996). In this task, confusion sets commonly consist of a small number of words that

are homophones (e.g. {whether, weather}), have similar spelling (e.g. {than, then}), or share

some grammatical functions (e.g. {between, among}). A substantial amount of research concerns

article and preposition errors produced by ESL learners (Dahlmeier and Ng, 2011, De Felice and

Pulman, 2008, Gamon, 2010, Gamon et al., 2008, Han et al., 2006, Izumi et al., 2003, Rozovskaya

and Roth, 2014, Tetreault et al., 2010, Tetreault and Chodorow, 2008). The HOO 2012 shared

task (Dale et al., 2012) was dedicated to these two types of errors. They constituted two of

�ve error types being a subject of the CoNLL-2013 shared task Ng et al. (2013) (more detailed

description of shared tasks is included in Section 2.3).

Preposition and article errors are examples of closed-class errors, which can be e�ectively

modeled by �nite confusion sets. However, the classi�cation-based approach has also been used

for open-class errors, such as subject-verb agreement or noun number errors (Jia et al., 2013,

Rozovskaya et al., 2014a,b, van den Bosch and Berck, 2013). Confusion sets are generated on the

�y for each word with a speci�c part-of-speech tag based on linguistic properties of particular

errors.

Context features The set of context features is usually developed speci�cally for each error

type. Features used for CSS correction are usually based on n-gram and bag-of-word features.

More sophisticated, linguistically-motivated features are commonly designed for articles or de-

terminer errors, and for open-class errors. However, for some error types, such as preposition

errors, good results are achieved with feature sets of n-gram features only (Rozovskaya and Roth,

2014).

The majority of feature sets that have been described in the literature consist of the following

features:

• Context-word features, which test for the presence of a particular word within a �xed-size

window around the source word (Golding, 1995, Golding and Roth, 1999).

• N -grams of tokens or tags (e.g. part-of-speech tags), which include or are adjacent to the

target word (Rozovskaya and Roth, 2010b).

• Syntactic features requiring at least a noun-phrase or verb-phrase chunking (Chodorow

et al., 2007, De Felice and Pulman, 2008, Tetreault et al., 2010).

• Features that mix various tags in a single n-gram (Fossati and Di Eugenio, 2007, Tetreault

and Chodorow, 2008).

• Linguistically-motivated hand-crafted features, which combine words and POS tags based

on the information from a chunker (De Felice and Pulman, 2008, Rozovskaya et al., 2013,

2014a, 2012).

• Morphology features, such as the number or the countability of a head noun (De Felice

and Pulman, 2008, Lee, 2004).

• Features including semantic information, for example hypernyms or WordNet categories

(De Felice and Pulman, 2008, Hirst and Budanitsky, 2005, Lee, 2004).

Chapter 2. Grammatical Error Correction 16

Rozovskaya and Roth (2010c) introduced the selection and correction training paradigms.

The di�erence between the two is whether the source word is taken into consideration during

training or not. In the selection paradigm, the source word is not used as a feature, so models

for ESL error correction are usually trained on native English data, and then applied to non-

native texts. The correction paradigm, in turn, makes the use of original author choice's and

thus requires error-annotated data. Recently, as large annotated ESL corpora have become

available, the correction paradigm is used more commonly (Cahill et al., 2013, Grundkiewicz

and Junczys-Dowmunt, 2015, Rozovskaya and Roth, 2010c, 2014), and gives better results than

training with the selection paradigm, which used to be more popular beforehand (Chodorow

et al., 2007, De Felice and Pulman, 2007, 2008, Gamon, 2010, Han et al., 2006, Tetreault and

Chodorow, 2008).

Classi�cation algorithms So far, a substantial number of classi�cation algorithms have been

used in GEC. Examples are: decision trees, Naive Bayes classi�er, Winnow algorithm, aver-

aged perceptron, linear and logistic regression, maximum entropy classi�er, or support vector

machines. The choice of the classi�er, in contrast to the choice of a feature set, is generally

independent of the confusion set and the type of targeted errors.

Classi�cation-based methods have been shown to produce the state-of-the-art results for the

correction of a number of error types. These are among the most actively studied approaches to

GEC in the last decade as the broad range of improvements to classi�cation models are possible.

The most signi�cant advantages of this approach are as follows:

• A wide range of well-known classi�cation algorithms and machine learning techniques can

be applied.

• It is possible to target speci�c error types by designing various confusion sets.

• When training data is available, the method is less costly and more general than the

rule-based approach.

• The method is mostly language-independent, except for the need of annotated data for a

given language.

Despite the popularity of classi�cation methods, building a separate model for each gram-

matical error is a complex task (Leacock et al., 2010, Chapter 2). The main limitations include:

• Only speci�c closed-class errors can be directly modeled by �nite confusion sets. Modelling

open-class errors is more challenging.

• A large amount of annotated text data is needed for training purposes. Size and quality

of the data set highly in�uence the performance.

• A separate model usually needs to be developed for each confusion set and error type,

which might include complex feature engineering.

• The problem of word insertions has to be handled separately, beyond the classi�cation

model.

Chapter 2. Grammatical Error Correction 17

2.2.5 Statistical machine translation

Automated grammatical error correction can also be considered as a kind of machine translation

task. The translation is performed from text with errors � interpreted as the source language

� into error-free text, which is treated as the target language.

In phrase-based statistical machine translation, for the input sentence S, the suggested cor-

rect sentence T̂ maximizes the conditional probability over possible corrections (Koehn, 2010).

The probability is calculated using a log-linear model as the weighted combination of feature

functions hi(T |S):

T̂ = arg max
T

p(T |S)

≈ arg max
T

exp
(∑
i=1

λi log hi(T |S)
)
.

Typical feature functions are the translation model learnt from a sentence-aligned parallel corpus

and the language model estimated on error-free texts. Weights λi should be learnt accordingly

to the evaluation metric (Och and Ney, 2002)4.

For the �rst time this approach has been applied to grammatical error correction by Brockett

et al. (2006). The authors use SMT to correct countability errors for a set of 14 mass nouns that

pose problems to Chinese ESL learners. For this very restricted task they achieve the results

of 61.81% corrected mistakes and show that their system can beat the Microsoft Word 2003

grammar checker. A GEC system based on the Moses SMT toolkit5 (Koehn et al., 2007) that

corrects grammatical errors of learners of Japanese is described by Mizumoto et al. (2011). This

work is continued for English in Mizumoto et al. (2012) and the e�ect of learner corpus size on

various types of grammatical errors is investigated. Dahlmeier and Ng (2012a) introduce a cus-

tom beam-search decoder that incorporates discriminative classi�ers for speci�c error categories

such as articles and prepositions.

The most notable SMT-based systems that participated in the CoNLL-2013 shared task are

Yuan and Felice (2013) and Yoshimoto et al. (2013) (a detailed description of the CoNLL shared

tasks dedicated to GEC is presented in Section 2.3). Yuan and Felice (2013) apply POS-factored

SMT model to �ve error types and experiment with training data containing generated arti�cial

errors. Improvements over the baseline are small, but their approach to generate errors looks

promising. Yoshimoto et al. (2013) use Moses for prepositions and determiners, but for other

error types they �nd that classi�er-based approaches and treelet language models perform better.

The winning system (Felice et al., 2014) in the CoNLL-2014 shared task uses a hybrid approach

that pipelines a rule-based and an SMT error correction system augmented by a large web-based

language model. The AMU system (Junczys-Dowmunt and Grundkiewicz, 2014), placed third,

is our contribution that is based on a phrase-based SMT system. Wang et al. (2014) trained

factored models incorporating word stem, pre�x, su�x and part-of-speech information.

More recent works which also rely on SMT systems exploit n-best list re-ranking methods

(Hoang et al., 2016, Mizumoto and Matsumoto, 2016, Yuan et al., 2016) or new feature functions,

such as a feed-forward neural translation joint models (Chollampatt et al., 2016a). However,

most of the improvement over the CoNLL-2014 shared task of these works is due to using

4Optimization of model weights is described in Chapter 5.
5http://www.statmt.org/moses/

http://www.statmt.org/moses/

Chapter 2. Grammatical Error Correction 18

the parameter tuning tools that we introduced in Junczys-Dowmunt and Grundkiewicz (2014)6.

Besides, Yuan and Briscoe (2016) show that recent models of Neural Machine Translation (NMT)

(Bahdanau et al., 2014) can be e�ective for the GEC task.

There are several advantages of using the statistical machine translation comparing to other

approaches to GEC:

• The lack of restriction to speci�c error types causes that a broad range of errors can be

corrected, including open-class errors.

• Phrase-based SMT system can naturally correct errors within phrases, not only for indi-

vidual words.

• SMT-based system can simultaneously correct interacting errors within a sentence.

• The parallel data with the corrected versions of sentences is su�cient for training purposes,

i.e. no annotations of error types are required.

• Monolingual data, which is more easily available than parallel data, can be easily incorpo-

rated into SMT systems in the form of language models.

• The machine translation approach is relatively easy to adapt to other languages.

• Building an SMT system does not require expert linguistic knowledge on grammatical error

correction.

Disadvantages of machine translation approach include:

• The performance of the SMT system highly depends on the amount and quality of training

data.

• Errors that have not been observed in training data cannot be corrected. This a�ects, for

example, spelling errors.

• Correction of errors within long-range dependencies in a sentence may be di�cult for

phrase-based SMT systems.

• Controlling and manipulating the correction of individual error types is di�cult when

training was not restricted to them.

2.2.6 Combined approaches

Various methods seem to be better suited for the correction of speci�c error types. GEC systems

that use separate components to tackle di�erent error types have to incorporate techniques that

combine the outputs from these components. Common approaches include the pipelining of

system components, where one error type is corrected after the other sequentially, re-scoring of

correction candidates from one component by the other, or combining individual results.

In Gamon et al. (2008, 2009), language models provide additional information to �lter out

spurious suggestions from error-speci�c classi�ers. Language models and classi�ers are combined

in a meta-classi�cation approach in Gamon (2010). Ehsan and Faili (2013) combine an SMT sys-

tem trained on arti�cial erroneous sentences with a rule-based grammar checker in an interactive

6Parameter tuning according to the GEC-speci�c evaluation metric is described in Chapter 5.

Chapter 2. Grammatical Error Correction 19

system for English and Farsi by aggregating correction candidates from both components. The

authors show that the two approaches are complementary, and the best performance is achieved

by the hybrid system. Boro³ et al. (2014) use rule-based methods to detect errors, but the correc-

tion is based on LM scores. Felice et al. (2014) explore various strategies for the combination of

rule-based methods with an SMT system and language models. Their best hybrid system, which

placed �rst in the CoNLL-2014 shared task, pipelines a rule-based module with phrase-based

SMT system producing candidate corrections, which are then ranked by a web-based language

model and �ltered by error type. After the shared task, Susanto et al. (2014) published work on

GEC systems combinations. They combine the output from a classi�cation-based system and

an SMT-based system using Multi-Engine Machine Translation (MEMT) (Hea�eld and Lavie,

2010) � an SMT-speci�c tool for the combination of multiple MT outputs. The method com-

bines single-best outputs from multiple independent systems to form an n-best list of combined

translations that improve over individual systems. In the very recent work, Rozovskaya and

Roth (2016) show the complementarity of the classi�cation and SMT approaches by pipelining

two systems. New state-of-the-art results on the CoNLL-2014 test set are achieved if a spell

checker and classi�ers are applied before the SMT system to the input text.

2.3 Shared tasks on GEC

In recent years, many of the advances in GEC emerged from various shared tasks. These are

open competitions, where participating teams are encouraged to develop systems for grammatical

error correction within constraints de�ned by the task organizers. They provide data sets and

evaluation frameworks, which allow for an objective and comparable evaluation of the developed

methods.

Shared tasks di�er from each other by focusing on di�erent error types or targeting di�erent

domains and languages.

2.3.1 The HOO shared tasks

The competitions on automatic grammatical error correction was started by the Helping Our

Own (HOO) (Dale and Kilgarri�, 2010, 2011) pilot shared task organised in 2011. The aim of

the task was to develop automated methods that assist authors within the NLP community with

the writing of scienti�c papers. Annotated text fragments from papers that had previously been

published in the proceedings of a conference or a workshop of the Association for Computational

Linguistics (ACL) were used as training and test data. The performance of the six participating

systems was evaluated using an F-score measure (Rijsbergen, 1979) on detection, recognition

and correction levels.

The second edition of the task � the HOO 2012 (Dale et al., 2012) � was focused on

detection and correction of determiner and preposition errors made by non-native speakers of

English. The organizers adapted the publicly-available CLC FCE Dataset (Yannakoudakis et al.,

2011) as training and test data for the shared task. 14 teams participated in the task. On a

blind test set, the UI system (Rozovskaya et al., 2012) achieved the highest F-score for detection

and recognition subtasks, the NU system (Dahlmeier et al., 2012) won the correction subtask.

Both systems used pipelined classi�ers to tackle both error types.

Chapter 2. Grammatical Error Correction 20

2.3.2 The CoNLL shared tasks

The most impactful competitions for ESL grammatical error correction were the two CoNLL

shared tasks (Ng et al., 2014, 2013) organised as a part of the Conference on Natural Language

Learning (CoNLL) in 2013 and 2014.

The goal of the shared tasks was to evaluate algorithms and systems for automatic correction

of grammatical errors in English essays written by L2 learners of English. A participating system

had to detect the grammatical errors that occur in the input texts, and return the corrected

texts in a fully automatic manner. The CoNLL-2013 shared task was devoted to the correction of

errors within the �ve selected error categories (article or determiner, preposition, noun number,

verb form and subject-verb agreement errors), which account for from one-third to one-half

of all errors in the provided data sets. The 2014 edition targeted grammatical errors of all

types occurring in the essays, grouped into 28 categories. The lack of restriction for speci�c

error types introduced a more natural scenario for the GEC task, which has been followed in

further competitions, such as QALB (Mohit et al., 2014a, Rozovskaya et al., 2015) or AESW

(Daudaravicius, 2015).

Participating teams were given training data with manually annotated corrections of gram-

matical errors and were allowed to use additional publicly available data for development. The

common training data set made available by the organisers was the National University of Sin-

gapore Learner Corpus (NUCLE) (Dahlmeier et al., 2013) (see Section 3.1 for a more detailed

description of the corpus). The corrected system outputs were evaluated using the MaxMatch

(M2) scorer (Dahlmeier and Ng, 2012b) over blind test data annotated similarly to provided

training data. Between the CoNLL-2013 and CoNLL-2014 shared tasks, the organizers adjusted

the Fβ-score from β = 1.0 to β = 0.5, weighting precision twice as much as recall (see Section 4.2

for the description of M2 metric).

During the CoNLL-2013, most of the participating systems used the machine learning-based

classi�er approach, including the winning system UIUC (Rozovskaya et al., 2013), some used

rule-based or language modeling components. Three systems STEL (Buys and van der Merwe,

2013), CAMB (Yuan and Felice, 2013) and TOR (Wilcox-O'Hearn, 2013) (ranked as six, eight

and eleven, respectively) used machine translation to correct all �ve error categories, whereas the

fourth system NARA (Yoshimoto et al., 2013) used this approach for preposition and determiner

errors only.

Thirteen system submissions took part in the CoNLL-2014 shared task. The o�cial results

are presented in Table 2.1, where systems that used a partially (∗) or fully (∗∗) SMT-based

approach are asterisked. Among the top-three positioned systems, two submissions � CAMB

(Felice et al., 2014) and AMU (Junczys-Dowmunt and Grundkiewicz, 2014) � were partially

or fully based on SMT. The second system, CUUI (Rozovskaya et al., 2014a), was a classi�er-

based approach, which used various classi�ers to correct speci�c error types and did not attempt

to tackle the whole range of errors. The best system (CAMB) used a hybrid approach that

pipelines a rule-based and an SMT error correction system augmented by a large web-based

language model. The AMU system, ranked in the third place, is our contribution based on a

phrase-based SMT system.

In this thesis, we generally follow the constraints established during the CoNLL-2014 shared

task, which allows for a competitive comparison, not only with systems participating in the

shared task, but also with a number of successive works that have evaluated their methods on

the o�cial CoNLL-2014 test set.

Chapter 2. Grammatical Error Correction 21

Rank Team ID P R M2
0.5

1 CAMB∗ 39.71 30.10 37.33
2 CUUI 41.78 24.88 36.79
3 AMU∗∗ 41.62 21.40 35.01
4 POST 34.51 21.73 30.88
5 NTHU∗ 35.08 18.85 29.92
6 RAC 33.14 14.99 26.68
7 UMC∗∗ 31.27 14.46 25.37
8 PKU 32.21 13.65 25.32
9 NARA 21.57 29.38 22.78
10 SJTU 30.11 5.10 15.19
11 UFC 70.00 1.72 7.84
12 IPN 11.28 2.85 7.09
13 IITB∗ 30.77 1.39 5.90

Table 2.1: The o�cial CoNLL-2014 shared task results.

2.3.3 Other competitions

Similar competitions focused on grammatical error correction have been organised for languages

other than English. In 2014 and 2015, two QALB shared tasks on automatic text correction

for Arabic (Mohit et al., 2014a, Rozovskaya et al., 2015) were organized in a similar manner

to the CoNLL shared tasks. Whereas QALB-2014 addressed errors produced by native Arabic

speakers in online comments, the next year's edition o�ered an additional track focused on errors

found in essays written by language learners. Participating teams were provided with training

and development data and were free to make use of additional publicly available resources. The

results were computed over blind data sets using the M2 scorer and F1.0 measure.

Another competition for non-English language is a shared task on Chinese Grammatical

Error Diagnosis (CGED) (Lee et al., 2015, Yu et al., 2014) organised during the Workshop on

Natural Language Processing Techniques for Educational Application (NLP-TEA) since 2014.

There were also tasks not directly focused on the grammatical error correction, but related

to the �eld and in�uence it to some extent. The Automated Evaluation of Scienti�c Writing

(AESW) (Daudaravicius, 2015) shared task and the annual shared task on Automatic Post-

editing (APE) (Bojar et al., 2016) are the most substantial examples.

2.4 Summary

This chapter introduced the �eld of automated grammatical error correction. Recent formula-

tions of the GEC task put no restriction on particular error types. The objective is the detection

and correction of a whole range of grammatical errors that can be produced by language users.

We reviewed several approaches proposed for GEC and pointed out their strengths and weak-

nesses.

Recently, data-driven methods lead the way in GEC recently. The latest studies and pre-

sented advantages of statistical machine translation approach seem to justify the choice of SMT

models as the basis for our research. In our experiments, we will follow the settings introduced

during the CoNLL-2014 shared task on the correction of grammatical errors made by non-native

learners of English.

Chapter 3

Data Sets

Although some types of errors, for instance subject-verb mistakes, can be corrected using heuris-

tic rules, others, like article or preposition errors, are di�cult to correct without substantial

amounts of corpus-based information (Leacock et al., 2010). This is especially true for data-

driven approaches, such as supervised classi�cation (Cahill et al., 2013) and statistical machine

translation (Mizumoto et al., 2012). Error-annotated corpora are also essential for the correction

training paradigm (Rozovskaya and Roth, 2010c).

In this chapter, we discuss the types and sources of data used to build GEC systems. We

review selected error corpora and monolingual data in Section 3.1. Section 3.2 describes a

language-independent method of edition mining from Wikipedia revision histories, which lead

to the building of the WikEd Error Corpus (Grundkiewicz and Junczys-Dowmunt, 2014)1 �

the largest publicly available error annotated data set with possible applications to sentence

paraphrasing, spelling correction, and grammatical error correction.

3.1 Error corpora and monolingual data

The leading approaches to gathering error corpora presented in the literature are: manual an-

notation of learners' writings, arti�cial errors generation within well-formed sentences, and the

extraction of errors and their corrections from text edit histories. Another possibility are social

networks for language learners.

Besides parallel data sets, monolingual data can also be useful for GEC.

3.1.1 Learner's corpora

Compared to multilingual translation corpora which today are plentiful or can be easily col-

lected2, genuine error corpora are not easy to come by. As noted by Leacock et al. (2010),

even if large quantities of students' writings are produced and corrected every day, only a small

number of them is archived in electronic form.

Most of the available error-annotated corpora has been created from the learners' writings.

The most popular publicly-available data set today, serving as a standard resource for empirical

approaches to grammatical error correction, is the NUS Corpus of Learner English (NU-

CLE) (Dahlmeier et al., 2013). The corpus was used as training data in two CoNLL GEC shared

1Section 3.2 presents an extended work initially published in the following papers: Grundkiewicz (2013a) and
Grundkiewicz and Junczys-Dowmunt (2014).

2http://www.statmt.org/moses/?n=Moses.LinksToCorpora

23

http://www.statmt.org/moses/?n=Moses.LinksToCorpora

Chapter 3. Data Sets 24

Corpus Sentences Tokens Annotators

NUCLE 57,151 1,161,567 1
CoNLL-2013 Test Set 1,381 29,207 1
CoNLL-2014 Test Set 1,312 30,144 2
GEC-10 Test Set 1,312 30,144 10

Table 3.1: Statistics of the NUCLE error corpora

tasks in 2013 and 2014 (Ng et al., 2014, 2013) and in a number of succeeding works, such as

Felice and Yuan (2014), Grundkiewicz and Junczys-Dowmunt (2014), Mizumoto and Matsumoto

(2016), Rozovskaya and Roth (2014), Yuan and Briscoe (2016). NUCLE consists of 1,414 es-

says written by Singaporean students who are non-native speakers of English. The essays cover

topics, such as environmental pollution, health care, etc. This corpus includes 57,151 sentences

in total. Grammatical errors in these sentences have been manually corrected by professional

English teachers and annotated with one of the 27 prede�ned error type. The error types are

presented in Appendix A.

Another 50 essays, collected and annotated similarly as NUCLE, were used in both CoNLL

GEC shared tasks (Ng et al., 2014, 2013) as blind test data. The CoNLL-2013 test set has been

annotated by one annotator, the CoNLL-2014 by two human annotators. The former data set

contains 1,381 sentences, the latter � 1,312. Bryant and Ng (2015) extended the CoNLL-2014

test set with additional annotations from two to ten annotators (we will refer to this resource

as GEC-10). Statistics of the NUCLE corpora are presented in Table 3.1; token statistics are

provided for the source (erroneous) side.

Other publicly-available ESL learner corpora are: the dataset of FCE scripts (Yannakoudakis

et al., 2011)3 extracted from the proprietary Cambridge Learner Corpus (Nicholls, 2003) (CLC),

and the International Corpus Network of Asian Learners of English4 (ICNALE). They are usually

small and do not contain related test sets. NUCLE is a notable exception, but for machine

learning approaches even ca. 50,000 sentences form a rather small resource.

There exist a number of publicly available unannotated ESL corpora5. However, they have

limited application to data-driven approaches to GEC as they do not contain corrections.

3.1.2 Arti�cial errors

A solution that tries to overcome data sparseness is the creation of arti�cial data. In the case of

arti�cial error corpora, grammatical errors are introduced by random substitutions, insertions, or

deletions. New errors are frequently generated according to the frequency distribution observed

in seed corpora.

Izumi et al. (2003) generate arti�cial errors assuming uniform distribution of target article

mistakes made by Japanese ESL learners. Brockett et al. (2006) introduce 14 mass/count noun

errors that pose problems to Chinese ESL learners with hand-constructed rules to use as training

data for their SMT system. Wagner et al. (2007) produce ungrammatical sentences with four

types of errors: context-sensitive spelling errors, agreement errors, errors involving a missing

3http://ilexir.co.uk/applications/clc-fce-dataset/
4http://language.sakura.ne.jp/icnale/
5https://www.uclouvain.be/en-cecl-lcworld.html

http://ilexir.co.uk/applications/clc-fce-dataset/
http://language.sakura.ne.jp/icnale/
https://www.uclouvain.be/en-cecl-lcworld.html

Chapter 3. Data Sets 25

word and errors involving an extra word. Error generation was based on an error analysis car-

ried out on a corpus formed by roughly 1,000 error-annotated sentences. Lee and Sene� (2008)

arti�cially introduced verb form errors into a news corpus based on parse trees. A tool for the

production of arti�cial errors that imitate genuine errors has been introduced by Foster and

Andersen (2009). Errors are generated using a list of naturally-occurring error patterns (option-

ally supplied with frequency information), and a grammatically-correct text corpus. Supported

error types are word insertion, deletion, substitution or move, and errors at part-of-speech level

may be generated. Yuan and Felice (2013) extracted lexical and part-of-speech patterns for �ve

types of errors from NUCLE and applied them to well-formed sentences. The work of Felice and

Yuan (2014) extends those experiments by using more linguistic information to derive generation

probabilities and create arti�cial data sets.

Arti�cial errors can be useful not only for building arti�cial error corpora, but also for

increasing error rate in training data sets to help data-driven methods to spot less frequent

errors (Cahill et al., 2013, Rozovskaya and Roth, 2010c).

Researchers have reported di�erent, often contrary, in�uence of arti�cial error corpora onto

a GEC system performance. Arti�cial errors can increase the recall at the cost of precision

(Rozovskaya and Roth, 2010c) or vice versa (Felice and Yuan, 2014).

Admittedly, arti�cial error generation is an e�cient and economic way to increase the size

of training datasets, but the approach has its drawbacks. The diversi�cation of errors in such

corpora can be lower due to a small number of real seed data. For speci�c error types, especially

for open-class errors, it may be di�cult to create descriptive patterns that can be applied to well-

formed sentences (Felice and Yuan, 2014). It is easier to replicate errors within confusion sets,

such as articles or prepositions (Rozovskaya and Roth, 2010c). Also, errors involving a redundant

words usually require speci�c methods, for example, detecting spaces preceding noun phrases as

potential places where an article or determiner could be incorrectly used. Furthermore, it has

been reported that arti�cial data can be less suited for evaluation purposes (Zesch, 2012).

3.1.3 Text revision histories

An alternative solution for gathering error corpora consists in the extraction of errors from text

revision histories. Wikipedia revisions are the most frequently source of data.

Miªkowski (2008) proposes the construction of error corpora from text revision histories based

on the hypothesis that the majority of frequent minor edits are the corrections of spelling, gram-

mar, style and usage mistakes. This hypothesis, although accurate, may lead to the situation

where some open-class error types, e.g. in�ectional errors, are missed. Grundkiewicz (2013a)

built a Polish corpus consisting of errors automatically extracted from Wikipedia revisions with-

out the restriction on edit frequency. To distinguish error corrections from unwanted edits and

to determine error categories, hand-written rules were used.

Wikipedia revisions have been used for the creation of naturally-occurring corrections and

sentence paraphrase corpora (Max andWisniewski, 2010), evaluation of statistical and knowledge-

based measures of contextual �tness for the task of real-word spell checking (Zesch, 2012) and

correction of preposition errors (Cahill et al., 2013).

Cahill et al. (2013) con�rm that data from Wikipedia is useful for both training a gram-

matical error correction system and creating arti�cial data. They show that models trained

with Wikipedia data perform well across diversi�ed test sets representing a variety of error

distributions. However, the authors have focused only on preposition errors.

Chapter 3. Data Sets 26

Work Sentences Tokens

Mizumoto et al. (2011) 391,699 n/a
Yoshimoto et al. (2013) 1,217,124 n/a
Junczys-Dowmunt and Grundkiewicz (2014) 3,733,116 51,259,679
Susanto et al. (2014) 1,114,139 12,945,666
Mizumoto and Matsumoto (2016) 1,069,127 n/a
Yuan and Briscoe (2016) n/a 28,823,615
Rozovskaya and Roth (2016) n/a ca. 48,000,000
Junczys-Dowmunt and Grundkiewicz (2016) 2,186,460 25,732,858

Table 3.2: Sizes of the Lang-8 corpus reported in the literature.

The main advantage of Wikipedia-extracted data sets is their size, but there are also disad-

vantages, for instance Wikipedia's encyclopedic style and an abundance of vandalism.

3.1.4 Social networks for language learners

Probably the best resource for language errors has made a recent appearance in the form of

social networks for language learners, an example being Lang-8 6. Learners with di�erent native

languages correct one another's texts based on their own native-language skills.

Mizumoto et al. (2011) published a list of learners' corpora7 that were scraped from the social

language learning site Lang-8, called the Lang-8 Learner Corpora. Sentences in this data

set might be corrected by more than one corrector, have more than one correction or contain

additional inline comments, usually added in a less structured manner. Version 1.0 of the Lang-8

corpus is free for academic purposes. Newer versions (2.0) require special license agreements for

any usage.

The Lang-8 NAIST corpus has been used by other researchers to build general GEC systems

for English as reported in: Mizumoto et al. (2011), Mizumoto and Matsumoto (2016), Rozovskaya

and Roth (2016), Susanto et al. (2014), Yoshimoto et al. (2013), Yuan and Briscoe (2016), as well

as to create systems tackling speci�c error types (Cahill et al., 2013, Sawai et al., 2013, Tajiri

et al., 2012). The comparison of various versions of the Lang-8 corpus is presented in Table 3.2.

Di�erent sizes come from di�erent techniques for �ltering noisy sentences. Besides, Mizumoto

et al. (2011) made use of sentences written only by Japanese ESL learners. Rozovskaya and

Roth (2016) used our Lang-8 WEB corpus that will be described in Section 5.3.1.

Compared to learner error corpora, data from social network services are not annotated in

a well-organized manner and thus may contain unrestricted comments or annotations. This,

and the fact that the data is automatically processed, causes noise, which has to be taken into

account.

3.1.5 Monolingual data

Monolingual data is more widely available and much larger in size than annotated data. In

GEC, it is usually used as a source of error-free texts (even though this assumption is usually

not true) providing statistics about the correct usage of the language. Common cases of applying

monolingual data to GEC are language modeling (Hdez and Calvo, 2014, Junczys-Dowmunt and

6http://lang-8.com
7http://cl.naist.jp/nldata/lang-8

http://lang-8.com
http://cl.naist.jp/nldata/lang-8

Chapter 3. Data Sets 27

Grundkiewicz, 2014) and extraction of word probability distribution for ML models (Rozovskaya

and Roth, 2014).

One of the most popular source of English data today is theEnglish version of Wikipedia8.

The content of Wikipedia is moderated, mostly by native-speakers, and the article quality is con-

stantly improved, which allows to treat Wikipedia as mostly error-free. On the other hand, the

encyclopaedic style di�ers signi�cantly from the general style of ESL writings.

Another widely used monolingual dataset is Common Crawl data9, a publicly available

resource which has been crawled from the web. The main advantage of this resource is its size

and the diversity of topics. Crawled texts are of various quality, but it has been shown that

web-scale language models can still improve the performance of a number of NLP tasks, such as

machine translation (Buck et al., 2014), and grammatical error correction (Junczys-Dowmunt

and Grundkiewicz, 2014).

Other large monolingual corpora used for grammatical error correction systems are English

Gigaword (Parker et al., 2011), Google Web 1T 5-gram Corpus (Brants and Franz, 2006), or the

British National Corpus (BNC)10.

3.2 The WikEd Error Corpus

In this section, we present the process of building the WikEd Error Corpus: the largest corpus

of corrective edits available for the English language.

In contrast to other works that use Wikipedia to build various NLP resources (Cahill et al.,

2013, Max and Wisniewski, 2010, Zesch, 2012), we processed the entire English Wikipedia revi-

sion history11 (not only a part of it) and gathered ca. 56 million sentences with annotated edits.

The corpus is not limited to speci�c error types, e.g. real-word spelling errors (Zesch, 2012) or

preposition errors (Cahill et al., 2013). WikEd does not exclude speci�c corrections, such as

repetitions or omissions of words, and corrections that refers only to punctuation or case modi�-

cation as in the work of Max and Wisniewski (2010). Possible application of the created corpus

include, but are not limited to, sentence paraphrasing, spelling correction, grammar correction,

and more.

The corpus inherits the user-friendly CC BY-SA 3.0 license of the original resource and

both, the WikEd Error Corpus and the tools used to produce it have been made available for

unrestricted download12.

3.2.1 Extracting edits from Wikipedia

Wikipedia dumps with complete edit histories are available in the XML format13. Similarly to

Max and Wisniewski (2010), we iterate over each two adjacent revisions of each Wikipedia page,

including articles, user pages, discussions, and help pages. To minimize the number of cases of

unwanted vandalism, we skip revisions and preceding revisions if comments contain suggestions

of reversions, e.g. reverting after (. . .), remove vandalism, undo vandal's edits, delete stupid joke,

etc. This is done by hand-written rules involving regular expressions.

8https://en.wikipedia.org
9http://commoncrawl.org

10http://www.natcorp.ox.ac.uk/corpus
11Wikipedia database dump from March 4th, 2014: http://dumps.wikimedia.org/enwiki/20140304/
12http://romang.home.amu.edu.pl/wiked/wiked.html
13http://dumps.wikimedia.org

https://en.wikipedia.org
http://commoncrawl.org
http://www.natcorp.ox.ac.uk/corpus
http://dumps.wikimedia.org/enwiki/20140304/
http://romang.home.amu.edu.pl/wiked/wiked.html
http://dumps.wikimedia.org

Chapter 3. Data Sets 28

Next, we remove XML and Wikitext Markup Language annotations14 from each article

version and split texts into sentences with the NLTK toolkit15. Pairs of edited sentences are

identi�ed with the Longest Common Subsequence (LCS) algorithm (Maier, 1978) that is applied

at the token level. Editions consisting of additions or deletions of full paragraphs are discarded.

Two edited sentences (we will refer to two corresponding edited fragments as sentences, even

if they are not well-formed) Si and Sj are added to the corpus if they meet several surface

conditions:

• The sentence length is between 2 and 120 tokens.

• The length di�erence between Si and Sj is less than 5 tokens.

• The relative token-based edit distance dedit(Si, Sj) with respect to the shorter sentence is

smaller than 0.3.

We de�ne the relative token-based edit distance as:

dedit(Si, Sj) =
dLD(Si, Sj) min(|Si|, |Sj |)

logb min(|Si|, |Sj |)
,

where dLD(Si, Sj) is the token-based Levenshtein edit distance (Levenshtein, 1966), |S| is the
length of the sentence S in tokens. This formula implies that the longer the sentence, the more

edits are allowed, but it prevents the acceptance of too many edits for long sentences. The

logarithm base b is empirically set to 20.

The threshold values in the above restrictions were chosen experimentally.

3.2.2 Collecting corrective edits

Over 55,109,182 million pairs of edited sentences from the English version of Wikipedia have

been collected. The most useful edits include:

• Spelling error corrections:

You can use rsync to
[
donload → download

]
the database .,

• Grammatical error corrections:

There
[
is → are

]
also

[
a →

]
two computer games based on the movie .,

• Stylistic changes:[
Predictably , the → The

]
game ended

[
predictably →

]
when she crashed her Escalade. . . ,

• Sentence rewordings and paraphrases:

These anarchists
[
argue against → oppose the

]
regulation of corporations .,

• Encyclopaedic style adjustments:

A
[
local education authority → Local Education Authority

]
(LEA) is the part of a council

in England or Wales.

The WikEd corpus contains also less useful edits for grammatical error correction task, e.g.:

14http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
15http://nltk.org

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
http://nltk.org

Chapter 3. Data Sets 29

Edits Freq. Edits Freq. Edits Freq.

ins(�,�) 1,169,076 ins(�and�) 65,867 ins(�in�) 36,890
del(�,�) 501,149 del(�a�) 62,920 sub(�,�,�and�) 36,799
ins(�the�) 288,175 del(�"�) 57,276 sub(�and�,�,�) 36,240
del(�the�) 249,101 del(�also�) 56,943 sub(�an�,�a�) 35,766
sub(�is�,�was�) 158,221 del(�and�) 56,687 ins(�to�) 35,534
ins(�a�) 93,019 sub(�a�,�an�) 54,917 del(�in�) 30,648
sub(�are�,�were�) 79,435 sub(�was�,�is�) 48,729 del(�has�) 29,778
del(�of�) 79,310 ins(�.�) 47,030 ins(�is�) 29,012
ins(�"�) 77,788 ins(�also�) 46,087 sub(�the�,�a�) 28,301
sub(�it 's�,�its�) 72,419 ins(�of�) 45,609 ins(�'s�) 28,241

Table 3.3: The most frequent edits in the WikEd corpus.

• Time reference changes:

The Kiwi Party
[
is → was

]
a New Zealand political party formed in 2007 .,

• Information supplements:

Aphrodite is the Greek goddess of love
[
→ , sex

]
and beauty .,

• Numeric information updates:

In
[
May 2003 → August 2004

]
this percentage increased to

[
62 → 67

]
% .,

• Item additions/deletions to/from bulleted lists:

Famous Bronxites include
[
→ Regis Philbin ,

]
Carl Reiner , Danny Aiello. . . ,

• Amendments of broken MediaWiki's markups:

The bipyramids are the
[
[[dual polyhedron | →

]
dual polyhedra

[
[[→

]
of the prisms .,

• Changes made by vandals:

David Zuckerman is a writer and
[
producer → poopface

]
for television shows.

The total number of edits is 71,474,188, among which 11,920,778 (16.68%) are deletions and

17,711,567 (24.78%) insertions. The most frequently occurring edits are presented in Table 3.3.

The sub(·,·) stands for word(s) substitutions, del(·) for deletions, and ins(·) for insertions.

3.2.3 Edition �ltering

Sentences with potentially unwanted edits, e.g. updates of bulleted list, amendments of Medi-

aWiki markup, and vandalism can be e�ectively �ltered out using simple heuristic rules. For

example, all pairs of sentences Si and Sj that satisfy the following conditions can be discarded:

• Either sentence Si or Sj contains a vulgar word (determined by the list of vulgarisms) or

a very long sequence of character with no spaces (e.g. produced by random keystrokes).

• Any of the sentences Si or Sj contains fragments of XML or Wiki markup, e.g. <ref>,

 or [http:.

• Edits concern changes in dates or numerical values only.

• The only edit consists of removing a full stop or semicolon at the end of the sentence Si.

Chapter 3. Data Sets 30

• The ratio of non-word tokens in Sj to word tokens is higher than a given threshold (we

used 0.5).

In the version of the WikEd corpus which has been made publicly available, these sentences

are only marked as potentially harmful, but not removed. For instance, vandalized entries may

be useful for various tasks by themselves.

3.2.4 Corpus format

It was our intention to release the WikEd Error Corpus in a machine-friendly format. We chose

a representation based on GNU wdiff output16 extended by comments including meta-data.

For example, for a sentence This page lists links about ancient philosophy. with the following

two edits: insertion of some at third position and substitution of about with to, the WikEd entry

corresponds to:

This page lists {+some+} links [-about-] {+to+} ancient philosophy.

Meta-data consist of:

• The revision id, accompanying comment, and revision timestamp.

• The title and id of the edited Wikipedia page.

• The name of the contributor or IP address in case of an anonymous edition.

All sentences preserve the chronological order of the original revisions.

3.3 Summary

Both error corpora and monolingual data are crucial to create e�ective grammatical error cor-

rection systems using data-driven approaches. In this chapter we described the types of error

corpora used in automated ESL grammatical error correction: annotated ESL learner writings,

arti�cially generated errors, corrections scraped from the social network sites, and edits extracted

from text revisions. We discussed their advantages and disadvantages. The sources of large-scale

monolingual data have also been shown.

We also introduced the WikEd Error Corpus � a new large resource with possible applica-

tions to sentence paraphrasing, spelling correction, and � as will be showed in Chapter 5 �

grammatical error correction.

16https://www.gnu.org/software/wdiff/manual/wdiff.html#wdiff

https://www.gnu.org/software/wdiff/manual/wdiff.html#wdiff

Chapter 4

Evaluation Metrics

For a fair comparison of two GEC systems, we need both shared datasets and an evaluation

framework. It is almost impossible to compare systems evaluated on di�erent test sets or against

di�erent evaluation metrics (Chodorow et al., 2012). Automatic evaluation, much easier to

perform than human evaluation, allows for fast, reproducible and objective feedback on system

performance during development and testing (Dahlmeier and Ng, 2012b). The choice of the

evaluation metric is important due to the fact that GEC systems, and other NLP systems,

should be developed and tuned according to a given metric in order to maximize the overall

performance. The latter is often neglected.

In this chapter, we discuss di�culties in the evaluation of grammatical error correction

systems in Section 4.1. Next, in Section 4.2, we introduce commonly-used evaluation metrics

including standard metrics originated from information retrieval, metrics developed speci�cally

for GEC, and metrics introduced for machine translation. In order to �nd the optimal metric for

the task, we evaluate selected metrics in terms of correlation with human judgment by conducting

the �rst large-scale human evaluation study of GEC systems presented in Section 4.31. We

describe the collection of human judgments, which are then turned into ordered rankings, and

analyze their correlation with standard automatic metrics used in GEC.

4.1 Di�culties in evaluating GEC systems

Chodorow et al. (2012) draw attention to a number of evaluation issues in error correction,

which make it hard to compare di�erent approaches. Lack of consensus in evaluation methods

is mainly due to the nature of the task. Main di�culties come from the following phenomena:

• The highly skewed distribution of positive and negative classes, i.e. the low frequency of

errors as compared to correctly used words.

For example, the baseline accuracy computed at the token level is very high as the WER in

ESL data is usually low (see Table 5.6). Examining the performance of a GEC system on

such a high accuracy above 90�95% can be misleading (Chodorow et al., 2012). According

to Chodorow et al. (2012), it is advisable to use automatic evaluation metrics, which take

into account the fact that the majority part is the negative class (i.e. non-errors), such as

F-score (Rijsbergen, 1979) or the Cohen's κ coe�cient (Cohen, 1960a).

1Section 4.3 presents an extended work originally published in Grundkiewicz et al. (2015).

31

Chapter 4. Evaluation Metrics 32

• Multiple possible corrections for a given error.

This poses two potential issues: �rstly, some of the corrections may be optional and others

mandatory, and it is not obvious whether they should be of the same importance; secondly,

the gold standard may not contain all the edits that may or should be made. A solution

presented by Madnani et al. (2011) consists in weighting errors based on the distribution

of several annotations for each error and use versions of the evaluation metrics which can

use these weights. This requires the existence of datasets with multiple annotations, which

are usually very small and costly to build, such as the extended version of the CoNLL-2014

test set created by Bryant and Ng (2015).

• A non-unique set of edits that transforms one string into another, even if the token level

is chosen as the evaluation unit size.

The span of the edit between the input sentence and the correction candidate for a given

error can mismatch the extent of the annotation in the reference correction. For instance,

for a sentence There is no a doubt., a hypothetical system may propose an edit a → ∅2,

whereas the gold standard includes the annotation a doubt → doubt. Such a mismatch re-

sults in the underestimation of the system performance. As pointed out by Sakaguchi et al.

(2016), this issue has to be considered not only during the development of an evaluation

framework, but also at the time of designing a data annotation schema.

• The size of the negative class (i.e. non-errors) being di�cult to determine.

The negative class instances are not obvious to determine as this requires the identi�cation

of all positions in a sentence where an error can occur. For example, in the case of article

or determiner errors, it is not evident which positions in a sentence should be counted as

instances of the zero article ∅. The more instances of ∅→ ∅ edits, the higher the number

of true negatives and the higher the accuracy (Chodorow et al., 2012).

• Interdependence of errors.

Some errors are interdependent, which means that one change in a sentence may require

another change. It is not obvious how strict the evaluation framework should be in scoring

partial corrections within interdependent errors.

No single metric serves all purposes. Chodorow et al. (2012) argue that the choice of the

metric should take into account the type of application that the system is used for. A mea-

sure that is useful for system comparison may not be the best to determine if a system is good

enough to be deployed operationally, and measures of overall sentence quality, may not ade-

quately support language learning. When building a Computer-Assisted Language Learning

(CALL) system is a goal, �uency may be favoured instead of technical grammaticality encoded

in annotated error corpora (Sakaguchi et al., 2016). Similarly, for a proofreader, recall may be

favoured at the expense of precision, and vice versa for a user interested in fast and risk-free

automatic improvement of the document quality.

2The symbol ∅ stands for the zero article.

Chapter 4. Evaluation Metrics 33

Input Reference Candidate

TN a a a
FP a a b
FN a b a
TP a b b
* a b c

Table 4.1: WAS evaluation scheme.

4.2 Evaluation metrics

Most of the automatic evaluation metrics used for GEC take into account the relation between

the elements of the triples consisting of the input (or source) sentence S, the system's output C

(the candidate correction or the hypothesis), and one or more annotator's references R (a gold

standard or an annotator correction).

Below, we introduce the most popular evaluation metrics speci�c for GEC and two of the

most popular metrics from machine translation.

4.2.1 Standard metrics

Automatic metrics calculated against gold standard annotations are based on a contingency

table, which compares system edits with reference edits. Each system edit can be classi�ed into

one of four types:

• A true positive (TP) is a �hit� indicating a match between the system edit and the reference

edit.

• A true negative (TN) is equivalent with a correct rejection, i.e. the system does not propose

an edit and it is not present in the reference.

• A false positive (FP) is a �false alarm� (or type I error), which indicates that the system

introduces an unnecessary edit which is not present in the reference.

• A false negative (FN) is a �miss� (or type II error) indicating a correction missed by the

system.

Chodorow et al. (2012) proposed a three-way contingency table called Writer-Annotator-

System (WAS) evaluation scheme where tree edits (from the input, reference and hypothesis)

are compared to determine the classi�cation type. The WAS evaluation scheme is presented in

Table 4.1. Depending on whether we are interested in measuring the system performance in the

detection or correction task, the star in the WAS evaluation scheme represents a di�erent type.

For error detection the case where three edits di�er from each other is a TP, for error correction

it is both FP and FN.

Using this notation, the measures of accuracy (Acc), precision (P) and recall (R) are formu-

lated as follows:

Acc =
TP + TN

N
,

Chapter 4. Evaluation Metrics 34

P =
TP

TP + FP
,

R =
TP

TP + FN
.

Accuracy measures the ratio of correct decisions the system made to all possible decisions. P

is the proportion of properly corrected errors out of all proposed corrections. The lower the

number of reported false alarms, the higher the precision. R, in turn, reports the proportion

of properly corrected errors among all errors annotated in the reference. Recall is sometimes

referred to as a measure of coverage.

A commonly used measure that combines P and R is F-score (or F-measure) (Rijsbergen,

1979). It is de�ned as the harmonic mean of the two:

Fβ = (1 + β2) · P ·R
(β2 · P) +R

.

A positive parameter β determines the trade-o� between P and R. The most popular F-scores

used in GEC are F1 and F0.5. F1 weights precision and recall equally, whereas F0.5 weights

precision twice as much as recall.

The range of Fβ-score is between 0 and 1. A score of 1 requires that all reference edits have

to be matched with system edits without false alarms, i.e. both P and R have to be equal to 1.

4.2.2 MaxMatch

The MaxMatch (M2) (Dahlmeier and Ng, 2012b) evaluation metric addresses the problem of

edits mismatched due to non-identical scopes of the system and reference edits. For example,

given the exemplary source sentence There is no a doubt. and the reference edit created by an

annotator a doubt → doubt, the accurate correction proposed by a GEC system There is no

doubt. might still not match the reference if the system edit is extracted as a longest common

subsequence between the source and system output, i.e. a → ∅.
The algorithm computes set of phrase-level system edits with the maximum overlap with

the reference by �nding the shortest path in the edit lattice graph. The graph is built based

on the token-level Levenshtein distances between a source sentence and hypothesis (hence, M2

is a sentence-level metric). A given set of candidate edits ci, . . . , cn is subsequently scored with

respect to the reference edits ri, . . . , rm with Fβ-score where P and R are de�ned as follows:

P =

∑n
i=1 |ci ∩ ri|∑n
i=1 |ci|

,

R =

∑n
i=1 |ci ∩ ri|∑n
i=1 |ri|

.

The M2 metric allows for multiple reference annotations and chooses references that maximize

the overall F-score. Hence, the intersection between ci and ri is de�ned as:

ci ∩ ri = {c ∈ ci | ∃r ∈ ri : match(c, r)},

where match(c, r) determines whether the system edit cmatches the reference edit r and depends

on the chosen task.

Chapter 4. Evaluation Metrics 35

Due to the adoption of M2 as the main evaluation metric during the CoNLL shared tasks on

GEC and the QALB shared task on automatic text correction for Arabic (Mohit et al., 2014b),

the metric has become the de facto standard metric for GEC.

However, the M2 metric is not perfect. Its results depend heavily on various hyperparame-

ters, i.e. the number of unchanged words than can appear in an edit or the handling of casing

and whitespace. M2 results are heavily in�uenced by the choice of β in the Fβ-score formula.

Moreover, M2 completely fails to score system output which can be judged to be worse that the

untouched input. The input always gets a score of 0. A higher score is assigned to a system

output which corrects at least one error from the gold standard regardless of how many new

errors are introduced.

Between the CoNLL-2013 and CoNLL-2014 shared tasks, the organizers changed β from

1.0 to 0.5, and motivated the change with intuition alone. The QALB shared tasks for Arabic

continue to use β = 1.0 � setting β = 0.5 would have changed the outcome of these tasks.

4.2.3 I-WAcc

The I-WAcc (I-measure on Weighted Accuracy) metric or group of metrics proposed by Felice

and Briscoe (2015) tries to address some of the shortcomings of M2. The metric is de�ned as

follows:

I-WAcc =

bWAcccc if WAccc = WAccs
WAccc−WAccs

1−WAccs
if WAccc >WAccs

WAccc
WAccs

− 1 otherwise

.

WAccc and WAccs are Weighted Accuracies calculated for the system output and the input text

respectively. WAcc is de�ned as:

WAcc =
w · TP + TN

w · (TP + FP) + TN + FN − (w + 1) · FPN2
,

where w is a weight which rewards corrections over preservation and simultaneously penalizes

false alarms over missed corrections. FPN stands for cases where source, candidate and reference

edit texts di�er from each other (the last row in Table 4.1).

Felice and Briscoe (2015) propose to use WAcc claiming that the accuracy seems a more ap-

propriate measure of text quality than F-score because it takes true negatives into consideration.

The inclusion of true negatives into the calculations makes this a very conservative metric, quite

similar to the machine translation metrics described hereafter.

The I-measure part is an idea that can be treated separately from WAcc. It assigns negative

weights to systems that are harmful with regard to the input text. The metric returns values

from the range [−1, 1]. A system equivalent to the input receives a score of 0, system output

that are worse than the input are assigned negative scores.

4.2.4 MT metrics

Using statistical machine translation for building grammatical error correction systems inspired

researchers to use machine translation evaluation metrics in the GEC �eld.

Chapter 4. Evaluation Metrics 36

The most popular MT evaluation metric is BLEU (BiLingual Evaluation Understudy) (Pap-

ineni et al., 2002). BLEU is de�ned as an n-gram match precision between a candidate sentence

C and a reference sentence R with a length penalty:

BLEU(C,R) = exp
(n∑

1

wn logPn(C,R)
)
· PenBLEU(·),

where n is a maximum length of n-gram (usually set to 4 as it has been shown to have the highest

correlation with human judgments); wn are positive weights; Pn(C,R) is a modi�ed precision

score calculated as a sum over the matches for each n-gram length for every candidate sentence

S in entire dataset; and PenBLEU(·) is a brevity penalty (Papineni et al., 2002), which prevents

short candidates from receiving too high a score.

BLEU is calculated at corpus level instead of sentence level. Its output is in the range of

[0, 1]. The higher the value, the more similar a hypothesis is to the reference. The value 1 is

attained by the candidate texts that are identical to reference texts. Therefore, in the case of

grammatical error correction evaluation, BLEU values are usually very high.

Another popular MT metric is METEOR (Denkowski and Lavie, 2011). It solves several

issues found for BLEU and has unique features, such as stemming and synonymy matching. The

METEOR metric is a tunable metric based on the harmonic mean of P and R calculated for

unigrams:

METEOR(C,R) =
P1(C,R)R1(C,R)

αR1(C,R) + (1− α)P1(C,R)
·
(
1− PenMETEOR(·)

)
.

P enMETEOR(·) is a fragmentation penalty, which helps to address gaps and di�erences in word

order.

Both BLEU and METEOR can be computed on several references.

4.3 Human evaluation of GEC systems

Machine translation researchers are aware of the fact that automatic metrics of MT quality

are an imperfect substitute for human assessments. Therefore manual evaluation of the system

outputs are regularly conducted � the best known are campaigns organized during the annual

Workshops on Statistical Machine Translation (WMT)3. The human evaluation campaigns are

an important driving factor for the progress in the �eld. Their results are reported as the

�nal rankings of MT shared tasks and used to evaluate automatic metrics or analyze human

perception of MT quality.

We conducted the �rst large-scale human evaluation of automatic grammatical error correc-

tion systems inspired by similar e�orts for machine translation, most notably WMT campaigns

(Bojar et al., 2013, 2014, Machá£ek and Bojar, 2014a). We adapted the methods developed for

recent iterations of the WMTs to GEC and modi�ed them where necessary. The processes of

collecting human judgments, computing new human-based system rankings and measuring their

correlation with selected GEC metrics4 are described in the subsequent sections.

3http://www.statmt.org/wmt16/
4The collected data in form of rankings and pairwise judgments and the tools used to calculate rankings,

clusters, inter-annotator agreement and metric correlations are available for download from the repository: https:
//github.com/grammatical/evaluation

http://www.statmt.org/wmt16/
https://github.com/grammatical/evaluation
https://github.com/grammatical/evaluation

Chapter 4. Evaluation Metrics 37

1 2 3 4 5 6 7 8 9 10 11 12 13

0.0

100.0

200.0

k distinct outputs

N
o.

of
se
n
te
n
ce
s

Figure 4.1: Frequencies of distinct corrected sentences per input sentence for systems partic-
ipating in the CoNLL-2014 shared task.

4.3.1 Data collection

We used the publicly available system outputs of the CoNLL-2014 shared task as evaluation

data. The test set consists of I = 1312 sentences. Twelve system outputs are available and each

output consists of the corrected versions of all sentences from the test set5.

In GEC evaluation, contrary to MT evaluation, the input has to be also considered. Often

system outputs are equal to the unmodi�ed input, as it is most desirable if there are in fact no

errors. We therefore included the INPUT as a separate system. This �nally results in N = 13

system outputs that need to be judged.

4.3.1.1 Sampling sentences for evaluation

Due to the relatively small number of modi�cations that GEC systems apply to the input there

is not only a large overlap with the input, but also among outcomes of compared systems. Figure

4.1 illustrates the number of test sentences for which the 13 systems produced k distinct outputs.

There is only one case where all systems proposed di�erent corrections6 and there are 22 sentences

where all outputs were the same7. On average there are 5.7 distinct proposed corrections per a

test sentence. This forms a need for the e�cient collection of pairwise judgments.

Following the WMT human evaluations (Bojar et al., 2013, 2014), we decided to present up

to M = 5 unique system outputs to be judged by the annotator in a single ranking. Judging

too many sentences at once would prolong the evaluation time for a single input sentence, what

we wanted to avoid. Assuming that sentences are sampled uniformly, we can either select �ve

candidates among the 13 di�erent systems or select at most �ve candidates from distinct outputs,

recording which systems overlapped. In both cases there are drawbacks:

• In the �rst case, if we sample systems uniformly, we lose easily obtainable pairwise judg-

ments for systems with the same output.

• In the latter case, if we collapse before sampling, we introduce a strong bias towards ties.

5The thirteenth participant NARA is missing from this set as this team did not submit a system description.
6Actually, an incorrectly joined long segment consisting of several sentences.
7Since the input is included, i.e. equal to the input.

Chapter 4. Evaluation Metrics 38

To counter the bias from the second method, we abandon uniform sampling of test set

sentences and use instead a parametrized distribution that favors more diverse, hence more

informative, sets of outputs. Below, we present our method for calculating the probability of

sampling a set of outputs.

Let us recall that I (= 1312) is the number of sentences in the test set, N (= 13) is the

number of systems to be evaluated, M is the maximum number of sentences presented to the

evaluator in a single ranking (we use M = 5), furthermore M ≤ N . As each system produced a

single output for each test sentence, the set of system outputs to be evaluated E = {O1, . . . , OI}
consists of I sets Oi of N output sentences each, i.e. ∀1≤i≤I |Oi| = N . Each sentence in Oi can

overlap with other sentences multiple times. Thus, for each set Oi we de�ne the corresponding

multiset of multiplicities Ui, such that
∑

u∈Ui
u = N .

Example 4.1 (Set of outputs and multiset of multiplicities). Let assume N = 13, i.e. there

are 13 system outputs. For an i-th sentence, three systems generate an identical output A, �ve

systems generate an output B, two systems generate an output C, and the remaining systems

generate di�erent outputs D, E and F. In this case, the set Oi = {A1, A2, A3, B1, B2, B3, B4, B5,
C1, C2, D, E, F}. The corresponding multiset of multiplicities is Ui = {3, 5, 2, 1, 1, 1}.

We de�ne ci(j) as the number of possible ways to choose at most M di�erent sentences that

cover j systems for the i-th set of outputs:

ci(j) =

∣∣∣∣∣
{
S ⊆ Ui : |S| ≤M ∧

∑
u∈S

u = j

}∣∣∣∣∣ .
Then the expected number Ci of systems covered by choosing at most M sentences is:

Ci =

∑N
j=M ci(j) · j∑N
j=M ci(j)

.

The pseudo-probability p′i of sampling the i-th sentence is de�ned as:

p′i =

(
M

2

)
(
Ci
2

) , where

(
Ci
2

)
=
Ci(Ci − 1)

2
,

which is the ratio of pairwise comparisons of M versus Ci di�erent systems.

Example 4.2 (Pseudo-probability). Let N = 13 and M = 5, i.e. there are 13 system outputs

and no more than 5 sentences are presented to human evaluator. For the multiset of multiplicities

Ui = {3, 5, 2, 1, 1, 1} as presented in Example 4.1, we get the following values of ci(j) for j =

5 . . . 13:

ci(5) = |{{A, C}, {A, D, F}, {A, E, D}, {A, E, F}, {B}, {C, E, D, F}}| = 6

ci(6) = |{{A, C, D}, {A, C, E}, {A, C, F}, {A, E, D, F}, {B, D}, {B, E}, {B, F}}| = 7

ci(7) = |{{A, C, D, F}, {A, C, E, D}, {A, C, E, F}, {B, D, F}, {B, E, D}, {B, E, F}, {C, B}}| = 7

Chapter 4. Evaluation Metrics 39

ci(8) = |{{A, B}, {A, C, E, D, F}, {B, E, D, F}, {C, B, D}, {C, B, E}, {C, B, F}}| = 6

ci(9) = |{{A, B, D}, {A, B, E}, {A, B, F}, {C, B, D, F}, {C, B, E, D}, {C, B, E, F}}| = 6

ci(10) = |{{A, B, D, F}, {A, B, E, D}, {A, B, E, F}, {A, C, B}, {C, B, E, D, F}}| = 5

ci(11) = |{{A, B, E, D, F}, {A, C, B, D}, {A, C, B, E}, {A, C, B, F}}| = 4

ci(12) = |{{A, C, B, D, F}, {A, C, B, E, D}, {A, C, B, E, F}}| = 3

ci(13) = |∅| = 0

These give the expected number of systems covered by choosing at most 5 outputs Ci = 354/44 ≈
8.02 and the pseudo-probability p′i ≈

(
5
2

)
/
(
8.02
2

)
= 10/28.17 ≈ 0.35

Example 4.3 (Pseudo-probability for unique outputs). Let N = 13 and M = 5, and consider

the extreme case where each system generates a di�erent output. For this example, the set Oi
consists of 13 di�erent systems outputs and the corresponding multiset of multiplicities consists

of 13 times 1, i.e. Ui = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}. Ci = 5, since ci(j) is equal to 1 for j = 5

and 0 for all j 6= 5, since there is no subset of U that has 5 or less elements and sums to more

than 5. The pseudo-probability p′i =
(
5
2

)
/
(
5
2

)
= 1.

In other words, for a set of all di�erent outputs we will always be able to cover 5 di�erent

systems if we choose 5 sentences, hence p′i = 1.

Example 4.4 (Pseudo-probability for identical outputs). Let again N = 13 andM = 5. For the

extreme case when all systems generate the same output, Ui = {13}. Since choosing a sentence

covers automatically all systems, ci(j) = 1 for j = 13 and ci(j) = 0 for j 6= 13. In that case

Ci = 13 and p′i =
(
5
2

)
/
(
13
2

)
= 10/78 ≈ 0.13.

The �nal probability pi of sampling the i-th set of outputs can be obtained by normalizing

over the entire set of output sets:

pi =
p′i∑|E|
j=1 p

′
j

=

(
Ci
2

)−1
|E|∑
j=1

(
Cj
2

)−1 .

4.3.1.2 Collecting system rankings

To collect human judgments we used the open-source evaluation system Appraise (Federmann,

2010), which is also used annually to run human evaluations of WMT.

Similarly as in the WMT human evaluation tasks, annotators were asked to rank sentences

from best to worse. Ties were allowed. Judges were aware that the absolute ranks bear no

relevance as ranks are later turned into relative pairwise judgments. No notion of �better� or

�worse� was imposed by the authors, we relied on the judges to develop their own intuition. All

judges were English native speakers and have strong backgrounds in linguistics, natural language

processing, or teaching English to ESL learners.

Several modi�cations to the Appraise framework were implemented8 to account for the spe-

ci�c nature of GEC and our sampling method. These changes include:

8The fork of the original source code which contains modi�cations for GEC can be found at https://github.
com/snukky/Appraise

https://github.com/snukky/Appraise
https://github.com/snukky/Appraise

Chapter 4. Evaluation Metrics 40

Figure 4.2: Screenshot of Appraise modi�ed for GEC judgment.

• Only the input sentence is displayed (top, bold), and no reference correction is given.

• The input sentence is surrounded by one preceding and one following sentence to illustrate

context.

• Identical corrections are collapsed into a single output, and all system names with the

same output are recorded internally.

• Edited fragments are highlighted: blue for insertions and substitutions, pale blue and

crossed-out for deletions.

By highlighting edited fragments, we aim to facilitate the identi�cation of di�erences between

proposed corrections. Due to the high similarity between candidates, these di�erences might have

been easily missed. Figure 4.2 displays a screenshot of our modi�ed version of Appraise with a

sentence under evaluation.

We collected system rankings from eight judges. Each judge ranked from 70 to 400 system

outputs, which resulted in the total 2,319 collected ranks (�rst two columns in Table 4.2).

4.3.1.3 Pairwise judgments

We turned collected individual rankings into sets of relative pairwise judgments, where the lower

ranked system scores a win.

Chapter 4. Evaluation Metrics 41

A B C D E

1

2

3

4

5

Output

R
an
k

A B C D E

Output

Figure 4.3: Two authentic example rankings with overlapping system outputs.

Figure 4.3 presents two example rankings with di�ering degrees of overlap between systems.

The �rst ranking (left) corresponds to Figure 4.2 and contains �ve outputs from six systems.

Output D is produced by two di�erent systems, outputs A, B, C and E are unique. A human

evaluator judged the system output B as best (rank 1), output C as second (rank 2), outputs D

and E are judged equivalently as third (rank 3), and A is judged to be worst (rank 5). The second

ranking (right) presents �ve unique outputs from nine GEC systems: output A was produced by

four systems, output B by two, and outputs C, D and E were unique.

When converting an individual ranking into a set of pairwise judgments of the form A>B, A=B,

A<B, absolute ranks and di�erences are lost9. Pairs from within overlaps result in ties, e.g. D=E

for the �rst ranking in Figure 4.3. Pairs between overlaps are expanded as full products, e.g. A>D

results in A>D1 and A>D2.

Due to the collapsing of identical outputs we obtained signi�cantly more data than the usual

10 pairs from one ranking with �ve sentences. For example, the following
(
6
2

)
= 15 pairwise

judgments can be obtained from the left ranking in Figure 4.3:

A>B A>C A>D1 A>D2 A>E

B<C B<D1 B<D2 B<E

C<D1 C<D2 C<E

D1=D2 D1=E D2=E

Greater overlap results in more pairwise judgments for the second example (
(
9
2

)
= 36):

A1=A2 A1=A3 A1=A4 A1>B1 A1>B2 A1<C A1<D A1<E

A2=A3 A2=A4 A2>B1 A2>B2 A2<C A2<D A2<E

A3=A4 A3>B1 A3>B2 A3<C A3<D A3<E

A4>B1 A4>B2 A4<C A4<D A4<E

B1=B2 B1<C B1<D B1<E B2<C B2<D B2<E

C>D C=E

D<E

Table 4.2 lists the full statistics for collected rankings by individual annotators. Unexpanded

pairs are WMT-style pairwise judgments before an output A gets split into overlapping systems

A1, A2, A3, etc. Ties for unexpanded pairs stem from equally ranked di�erent outputs. The large

number of ties for expanded pairs is to be expected due to the high overlap between systems.

9For example, a ranking similar to the left ranking from Figure 4.3 where the system output A is ranked as
fourth instead of �fth would be converted to the same set of pairwise judgements.

Chapter 4. Evaluation Metrics 42

Judge Ranks Unexpanded Expanded

1 400 3525 (1022) 18400 (10166)
2 299 2684 (1099) 13657 (8429)
3 400 3523 (914) 18912 (9684)
4 201 1750 (550) 9478 (5539)
5 349 3099 (766) 17107 (8972)
6 400 3474 (517) 19313 (9209)
7 70 646 (145) 3383 (1593)
8 200 1815 (681) 8848 (5525)

Total 2319 20516 (5694) 109098 (59117)

Table 4.2: Statistics for collected rankings (Ranks), unexpanded pairwise judgments and
expanded pairwise judgments. Corresponding numbers for ties are given in parentheses.

4.3.1.4 Inter- and intra-annotator agreement

Again inspired by the WMT evaluation campaigns, we computed annotator agreement as a

measure of reliability of the pairwise judgments with the Cohen's κ coe�cient (Cohen, 1960b):

κ =
P (A)− P (E)

1− P (E)
,

where P (A) is the proportion of times that the annotators agree, and P (E) is the proportion of

times that they would agree by chance. κ assumes values from 0 (no agreement) to 1 (perfect

agreement).

All probabilities were computed as ratios of empirically counted pairwise judgments. As

judges worked on collapsed outputs, we calculated agreement scores for unexpanded pairs.

Otherwise, the high overlap would unfairly increase agreement. P (A) was calculated by ex-

amining all pairs of outputs, which had been judged by two or more judges, and counting

the proportion of cases when the judges on the comparison agreed that A<B, A=B, or A>B.

P (E) = P (A<B)2 +P (A=B)2 +P (A>B)2 is the probability that two judges agree randomly. Intra-

annotator agreement as a measure of consistency was calculated for output sets that had been

judged more than once by the same annotator.

Agreement numbers in Table 4.3 are in the lower range of values reported for MT human

evaluation tasks organized during WMT (Bojar et al., 2014). However, it should be noted

that judges never see repeated outputs within one ranking which probably decreases agreement

compared to the MT-speci�c task. While sentence-wise agreement is rather weak, we see in

the Subsection 4.3.3 that global system rankings computed for individual judges are highly

correlated.

4.3.2 Computing ranks

In this section, it is our aim to produce a system ranking from best to worse by computing

the average number of cases each system was judged better than other systems based on the

collected pairwise rankings. While previously introduced methods for producing rankings, total

orderings as well as partial orderings at chosen con�dence-levels, can be directly applied to

our data, determining which ranking is more accurate turns out to be methodologically and

computationally more involved due to the speci�c nature of GEC outputs.

Chapter 4. Evaluation Metrics 43

Agreement Value Degree

Inter-annotator 0.29 Weak
Intra-annotator 0.46 Moderate

(a) Inter-annotator and intra-annotator
agreement for all judges

1 2 3 4 5 6 7 8

1 .42 .26 .30 .37 .34 .26 .31 .24
2 � .30 .25 .28 .23 .20 .10 .20
3 � � .50 .35 .44 .34 .46 .26
4 � � � .34 .34 .30 .20 .26
5 � � � � .60 .36 .34 .32
6 � � � � � .44 .35 .25
7 � � � � � � * *
8 � � � � � � � .48

(b) Pairwise inter-annotator and intra-
annotator agreement per judge. Stars indi-

cate too few overlapping judgements.

Table 4.3: Inter-annotator and intra-annotator agreement (Cohen's κ) on unexpanded pairwise
judgments.

We adapted two ranking methods applied during WMT13 and WMT14 to human GEC

evaluation: the Expected Wins method and a WMT-speci�c adaption of TrueSkill.

4.3.2.1 Ranking methods

The Expected Wins (EW) method has been introduced for WMT13 (Bojar et al., 2013) and

is based on an underlying model of �relative ability� proposed in Koehn (2012). One advantage

of this method is its intuitiveness � the scores re�ect the probability that a system Si is ranked

higher than another system that has been randomly chosen from a pool of opponents {Sj : j 6= i}.
De�ning the function win(A,B) as the number of times system A is ranked better than

system B, Bojar et al. (2013) calculate EW scores as follows:

scoreEW(Si) =
1

|{Sj}|
∑
j,j 6=i

win(Si, Sj)

win(Si, Sj) + win(Sj , Si)
.

This model ignores ties which we �nd slightly unsettling, as in our case the majority of

judgments are in fact ties. Based on the �ndings of Bojar et al. (2011) that ties introduce

bias, they are dropped from calculations of the rankings for the recent WMT human evaluation

campaigns. Bojar et al. (2014) evaluated selected methods of computing rankings, including

EW and the TrueSkill method discussed below with the conclusion to choose TrueSkill as the

o�cial ranking method.

The TrueSkill (TS) ranking system (Herbrich et al., 2007) is a skill based ranking system

for Xbox Live developed at Microsoft Research. It is used to identify and model player's (GEC

systems in our case) ability in a game to assign players to competitive matches. The TrueSkill

ranking system models each player Si by two parameters: the average relative ability µSi and

the degree of uncertainty in the player's ability σ2Si
.

Chapter 4. Evaluation Metrics 44

Maintaining an uncertainty allows TS to make greater changes to the ability estimates at the

beginning, smaller changes after a number of consistent matches has been played. Due to that

TS can identify the ability of individual players from a smaller number of pairwise comparisons.

A modi�cation of this approach to the WMT manual evaluation procedure by Sakaguchi

et al. (2014) has been adopted as the o�cial ranking method during WMT14 replacing EW.

TrueSkill system scores are calculated as inferred means:

scoreTS(Si) = µSi .

The ranking is created by sorting systems accordingly to the obtained scores.

4.3.2.2 Rank clusters

Both ranking methods produce total orderings without information on statistic signi�cance of

the obtained ranks. In the context of MT, Bojar et al. (2014) notice that the similarity of the

participants in terms of used methods and training data causes some of them to be very close

in quality. Thus, the similar systems are grouped into equivalence classes based on a method

proposed by Koehn (2012). Although applied methods and training data among the systems

examined in this work are quite diverse, a great similarity of produced outputs is an inherent

feature of the GEC task. The great number of output overlaps and pairwise ties con�rm this.

Therefore, for each system Sj placed on rank rj we also tried to determine true systems

rank ranges [r′j , . . . , r
′′
j] at a con�dence-level of p ≤ 0.05 and clusters of equivalent systems

by following the procedure described by Koehn (2012). This was accomplished by applying

bootstrap resampling: pairwise rankings were drawn from the set of judgments with multiple

drawings. Based on this sample a new ranking was produced. After repeating this process a

1000 times the obtained 1000 ranks for Sj were sorted, and the top 25 and bottom 25 ranks were

discarded. The interval of the remaining ranks served as the �nal rank range.

Next, these rank ranges were used to produce clusters of overlapping rank ranges. Final

rankings for both methods are presented in Tables 4.4b and 4.4c, EW and TS, respectively.

These rankings di�er from the o�cial CoNLL-2014 ranking (Tab. 4.4a) and will be discussed in

Section 4.3.2.4.

4.3.2.3 Choosing the �nal ranking

The presented methods create quite similar, though distinct rankings. Only one of these rankings

should be chosen as the �nal result of the human evaluation task.

We followed Bojar et al. (2014) who choose the method based on the ranking model's ability

to predict pairwise rankings. Accuracy is computed by 100-fold cross-validation. For each fold a

new ranking is trained from 99 parts, the left-over part serves as testing data. Accuracy is then

averaged over all 100 test sets.

In the �rst step, we calculated the accuracy of the unclustered total orderings for non-ties

only, discarding ties. As noticed before, a ranking based on model scores alone cannot predict

ties. This requires equivalence classes. Bojar et al. (2014) de�ne a draw radius r such that

systems whose scores di�er by less than that parameter are assigned to one cluster. The value

of r is tuned to maximize accuracy for each fold via grid search.

In the case of GEC, due to the large number of ties, their method of tuning r is trapped in

local maxima and assigns all systems to a single cluster. Alternatively, we propose to calculate

Chapter 4. Evaluation Metrics 45

System P R M2
0.5

1 CAMB 39.7 30.1 37.3
2 CUUI 41.7 24.8 36.7
3 AMU 41.6 21.4 35.0
4 POST 34.5 21.7 30.8
5 NTHU 35.0 18.8 29.9
6 RAC 33.1 14.9 26.6
7 UMC 31.2 14.4 25.3
8 PKU 32.2 13.6 25.3
9 SJTU 30.1 05.1 15.1
10 UFC 70.0 01.7 07.8
11 IPN 11.2 02.8 07.1
12 IITB 30.7 01.3 05.9
13 INPUT 00.0 00.0 00.0

(a) O�cial CoNLL-2014 ranking

Score Range System

1 0.628 1 AMU

2 0.566 2-3 RAC
0.561 2-4 CAMB
0.550 3-5 CUUI
0.539 4-5 POST

3 0.513 6-8 UFC
0.506 6-8 PKU
0.495 7-9 UMC
0.485 7-10 IITB
0.463 10-11 SJTU
0.456 9-12 INPUT
0.437 11-12 NTHU

4 0.300 13 IPN

(b) Human Expected Wins
ranking

Score Range System

1 0.273 1 AMU

2 0.182 2 CAMB

3 0.114 3-4 RAC
0.105 3-5 CUUI
0.080 4-5 POST

4 -0.001 6-7 PKU
-0.022 6-8 UMC
-0.041 7-10 UFC
-0.055 8-11 IITB
-0.062 8-11 INPUT
-0.074 9-11 SJTU

5 -0.142 12 NTHU

6 -0.358 13 IPN

(c) Human TrueSkill ranking

Table 4.4: Comparison of o�cial CoNLL-2014 ranking and human rankings. Ranges and
clusters have been calculated with bootstrap resampling at p ≤ 0.05.

clusters according to the method described in the previous section. This does not quite solve

the problem of over�tting to ties, since decreasing the p-value has an e�ect similar to increasing

r. However, by �xing p ≤ 0.05 we directly evaluate rankings of the form given in Table 4.4. The

absolute values of scores and their di�erent interpretations between methods become irrelevant,

which makes it unnecessary to tune a parameter like r.

The main drawback of this approach is its computational cost10. For each of the 100 folds we

bootstraped another 100 rankings with EW and TS, �xed p ≤ 0.05 and calculated rank clusters.

The single clustered ranking for each fold was then used to calculate accuracy for the held-out

test data.

Method EW TS

Total ordering (non-ties) 58.18 58.15
Bootstrapped clusters 40.12 39.48

Table 4.5: Accuracy for ranking-based prediction of pairwise judgments.

For our data, contrary to the MT-speci�c results from Bojar et al. (2014), EW beats TS

in both cases (Table 4.5). Since the di�erence in quality for the total orderings are minimal,

choosing a method based on the quality of the clustering for a common p seems reasonable. We

therefore present the Expected Wins-based ranking (Table 4.4b) as the �nal result of the human

evaluation e�ort and refer to it in the remainder of this chapter when the human ranking is

mentioned.

10Computing 10000 TS rankings took about 12 hours using 32 parallel processes.

Chapter 4. Evaluation Metrics 46

4.3.2.4 Analysis

The �nal human-created ranking (Table 4.4b) consists of four non-overlapping rank clusters.

Rank ranges have been calculated at a con�dence level of 95%. While general tendencies are

similar, comparing the o�cial CoNLL-2014 ranking (Table 4.4a) with the manually created

Expected Wins ranking shows a few interesting di�erences:

• The AMU system, ranked third in the o�cial automatic ranking, is judged to be the leader

by human judges occupying its own rank cluster. For six out of eight judges, AMU has

the highest score. Two judges place it second and rank ranges always start with 1. The

score di�erence between AMU and the second-placed system corresponds to the di�erence

between the second and seventh system.

• The o�cially winning system CAMB occupies third place in terms of EW scores and is

placed in the second rank cluster with four other systems. Out of eight judges, only one

put CAMB on �rst place in terms of EW scores.

• RAC, ranked in the middle of the o�cial ranking, is elevated to second place although it

occupies a rank cluster with three other systems.

• NTHU is a system that, based on M2 scores, should be similar to RAC, is put on second

to last position in terms of EW scores.

• Two systems are judged to be worse than the unchanged INPUT in terms of EW scores.

This cannot be captured by the M2 metric. The rank cluster of systems that includes

INPUT is the largest among the four clusters and suggests these co-clustered system hardly

di�er from INPUT.

The revealed discrepancies put a question mark behind the idea of conducting competitions

of GEC systems based on automatic metrics alone, at least as long the quality of the used

metrics has not been established. Of course, the human evaluation performed in this work may

be disputable as well. While we believe that the applied methods of computing rankings from

pairwise judgments produce accurate system-level rankings under the given assumptions, we

cannot help but wonder about the e�ects of a possible over-simpli�cation.

Current ranking methods do not take into account annotator bias or quality. A closer look

at the per-judge rankings provided in Table 4.6 seems to suggest that certain phenomena maybe

due to the in�uence of single annotators. Including uncertainty about judgment quality into the

ranking could help. This might be di�cult on the level of pairwise judgments as per sentence

inter-annotator agreement (Table 4.3) is naturally low for this kind of ambiguous task, but

system-level inter-annotator ranking correlations in the next section (Table 4.9) are on average

higher (though may still vary from 0.19 to 0.91) and may allow for a better assessment of

annotator quality.

For completion, we also include pairwise comparisons between all systems according to EW

in Table 4.7. Each cell contains the percentage of cases the system in that column was judged to

be better than the system in that row. Bold values mark the winner. We applied the Sign Test

to measure statistically signi�cant di�erences: ? indicates statistical signi�cance at p ≤ 0.10; †
indicates statistical signi�cance at p ≤ 0.05; and ‡ indicates statistical signi�cance at p ≤ 0.01.

Chapter 4. Evaluation Metrics 47

Score Range System

1 0.674 1-2 CAMB
0.658 1-2 AMU

2 0.573 3-6 CUUI
0.573 3-6 PKU
0.566 3-7 POST
0.553 3-8 RAC
0.544 4-8 NTHU
0.537 5-8 UMC

3 0.436 9-10 SJTU
0.419 9-11 UFC
0.387 10-12 IITB
0.332 11-12 INPUT

4 0.276 13 IPN

(a) Judge 1

Score Range System

1 0.640 1 AMU
2 0.559 2-6 CUUI

0.558 2-6 RAC
0.557 2-7 UFC
0.543 2-7 CAMB
0.526 3-9 PKU
0.511 5-10 POST
0.511 4-11 IITB
0.508 5-10 UMC
0.473 7-11 INPUT
0.472 8-11 NTHU

3 0.398 12 SJTU
4 0.286 13 IPN

(b) Judge 2

Score Range System

1 0.612 1-2 AMU
0.578 2-3 CUUI
0.564 2-5 UFC
0.534 3-7 RAC
0.526 4-7 POST
0.517 4-8 UMC
0.508 4-9 IITB
0.474 5-11 INPUT
0.467 8-12 SJTU
0.464 8-12 PKU
0.463 8-12 CAMB
0.458 9-12 NTHU

2 0.333 13 IPN

(c) Judge 3

Score Range System

1 0.641 1-2 AMU
0.631 1-2 CAMB

2 0.581 3-4 RAC
0.578 3-4 CUUI

3 0.507 5-10 UFC
0.494 5-10 POST
0.490 5-10 UMC
0.488 5-11 SJTU
0.486 5-10 PKU
0.473 5-11 INPUT
0.441 9-12 NTHU
0.378 11-12 IITB

4 0.313 13 IPN

(d) Judge 4

Score Range System

1 0.613 1-2 AMU
0.608 1-2 RAC

2 0.568 3-5 CUUI
0.554 3-6 CAMB
0.535 4-7 POST
0.526 4-9 UFC
0.515 5-9 PKU
0.496 6-10 SJTU
0.487 6-11 INPUT
0.472 8-11 IITB
0.461 9-11 UMC

3 0.375 12 NTHU
4 0.290 13 IPN

(e) Judge 5

Score Range System

1 0.601 1-2 RAC
0.579 1-4 AMU
0.565 1-6 IITB
0.562 2-6 POST
0.548 2-8 INPUT
0.535 3-8 UFC
0.519 6-9 PKU
0.516 6-9 CAMB
0.491 7-10 SJTU
0.474 9-10 CUUI

2 0.428 11 UMC
3 0.368 12 NTHU
4 0.313 13 IPN

(f) Judge 6

Score Range System

1 0.788 1 AMU
2 0.697 2 CAMB
3 0.553 3-7 RAC

0.544 3-7 UMC
0.537 3-7 POST
0.533 3-10 IITB
0.487 5-10 PKU
0.474 5-12 INPUT
0.462 6-11 CUUI
0.436 6-12 SJTU
0.408 8-12 UFC
0.386 9-12 NTHU

4 0.303 13 IPN

(g) Judge 7

Score Range System

1 0.660 1-2 AMU
0.625 1-3 CUUI
0.568 2-7 IITB
0.556 3-6 CAMB
0.543 3-7 UMC
0.537 3-7 POST
0.483 5-10 INPUT
0.481 5-10 UFC
0.478 7-11 RAC
0.466 7-11 NTHU
0.420 10-12 PKU
0.419 10-12 SJTU

2 0.260 13 IPN

(h) Judge 8

Table 4.6: Rankings by individual annotators. Cluster ranks and rank ranges have been
computed with boostrap resampling at p = 0.1 to accomodate for the reduced number of

judgments per ranking.

Chapter 4. Evaluation Metrics 48

A
M
U

R
A
C

C
A
M
B

C
U
U
I

P
O
S
T

U
F
C

P
K
U

U
M
C

II
T
B

S
J
T
U

IN
P
U
T

N
T
H
U

IP
N

AMU � .44 ‡ .47 ? .46 † .44 ‡ .34 ‡ .40 ‡ .37 ‡ .32 ‡ .34 ‡ .32 ‡ .31 ‡ .24 ‡
RAC .56 ‡ � .53 .48 .48 .40 ‡ .45 † .44 ‡ .39 ‡ .38 ‡ .38 ‡ .43 ‡ .28 ‡

CAMB .53 ? .47 � .49 .45 ‡ .43 ‡ .43 ‡ .42 ‡ .42 ‡ .43 ‡ .42 ‡ .43 ‡ .34 ‡
CUUI .54 † .52 .51 � .49 .42 ‡ .47 .46 † .42 ‡ .41 ‡ .41 ‡ .42 ‡ .32 ‡
POST .56 ‡ .52 .55 ‡ .51 � .45 ‡ .47 .46 ? .44 ‡ .44 ‡ .43 ‡ .42 ‡ .29 ‡
UFC .66 ‡ .60 ‡ .57 ‡ .58 ‡ .55 ‡ � .54 ? .50 .49 .44 ? .27 † .42 ‡ .21 ‡
PKU .60 ‡ .55 † .57 ‡ .53 .53 .46 ? � .50 .47 .46 ? .46 ? .46 † .35 ‡
UMC .63 ‡ .56 ‡ .58 ‡ .54 † .54 ? .50 .50 � .48 .47 .48 .45 ‡ .35 ‡
IITB .68 ‡ .61 ‡ .58 ‡ .58 ‡ .56 ‡ .51 .53 .52 � .48 .43 .43 ‡ .27 ‡
SJTU .66 ‡ .62 ‡ .57 ‡ .59 ‡ .56 ‡ .56 ? .54 ? .53 .52 � .53 .46 ? .30 ‡

INPUT .68 ‡ .62 ‡ .58 ‡ .59 ‡ .57 ‡ .73 † .54 ? .52 .57 .47 � .43 ‡ .22 ‡
NTHU .69 ‡ .57 ‡ .57 ‡ .58 ‡ .58 ‡ .58 ‡ .54 † .55 ‡ .57 ‡ .54 ? .57 ‡ � .41 ‡

IPN .76 ‡ .72 ‡ .66 ‡ .68 ‡ .71 ‡ .79 ‡ .65 ‡ .65 ‡ .73 ‡ .70 ‡ .78 ‡ .59 ‡ �

Table 4.7: Head-to-head comparison for human Expected Wins.

4.3.3 Correlation with GEC metrics

Since WMT08 (Callison-Burch et al., 2008) the �metrics task� has been part of the WMT. The

aim of the metrics task is to assess the quality of automatic evaluation metrics for MT in terms

of correlation with the collected human judgments. We attempt the same in the context of GEC.

4.3.3.1 Measures of correlation

Based on Machá£ek and Bojar (2013), we used Spearman's rank correlation ρ and Pearson's

correlation co-e�cient r to compare rankings produced by various metrics to the human-created

ranking from the previous section. All metrics presented in Section 4.2.4 try to assign higher

scores to better systems. Therefore metrics with Spearman's ρ or Pearson's r closer to 1 are

deemed to be better. The comparison is made on the document-level, and we leave sentence-level

correlation as a topic for future research.

The simpli�ed version of Spearman's rank correlation ρ for rankings with no ties is

de�ned as:

ρ = 1− 6
∑
d2i

n(n2 − 1)
,

where di is the di�erence between the human rank and the metric's rank for system i, n is the

number of systems. If all system are ranked in the same order then ρ = 1, for the inverse order

ρ = −1.

Machá£ek and Bojar (2013) �nd that Spearman's ρ is too harsh in cases where systems

are very close in terms of EW scores but di�er by rank and propose to also use Pearson's

correlation co-e�cient r. During the WMT14 metrics task (Machá£ek and Bojar, 2014b),

Spearman's ρ has been replaced with Pearson's r entirely. The Pearson's correlation co-e�cient

r is calculated as:

Chapter 4. Evaluation Metrics 49

Metric Spearman's ρ Pearson's r

M2 F1.0 0.648 0.610
M2 F0.5

∗ 0.692 0.627
M2 F0.25 0.720 0.680
M2 F0.18 0.758 0.701

M2 F0.1 0.670 0.652

I-WAcc -0.154 -0.098

BLEU -0.346 -0.240
METEOR -0.374 -0.241

Table 4.8: Correlation results for various metrics and human ranking. Starred metric has
been used for the CoNLL-2014 shared task ranking.

r =

∑n
i=1(Hi − H̄)(Mi − M̄)√∑n

i=1(Hi − H̄)2
√∑n

i=1(Mi − M̄)2
,

where H is the vector of human scores, M is the vector of metric scores, H̄ and M̄ are corre-

sponding means.

4.3.3.2 Metrics

The inventory of automatic evaluation metrics for GEC is much more restricted than in the case

of MT. We assessed four metrics introduced earlier in Section 4.2.4: MaxMatch, I-WAcc, BLEU

and METEOR.

The default parameters for English in METEOR metric have been selected to match human-

created MT-system rankings from the earlier editions of WMT. Tuning METEOR parameters

for GEC-speci�c results was out of the scope of this thesis.

In order to be able to use the CoNLL-2014 gold standard with MT metrics, the edit-based

annotation has been converted into two plain text �les, one per annotator, that are treated as

target language references.

4.3.3.3 Analysis

Correlation results are collected in Table 4.8. Assumed degrees of correlation are [0, 0.3] for neg-

ligible correlation, [0.3, 0.5] for low correlation, [0.5, 0.7] for moderate correlation, and [0.7, 0.9]

and [0.9, 1] for high and very high correlations (Hinkle et al., 2003). The M2 metric is generally

moderately or strongly correlated with human judgment, on the brink of high correlation for

values of β closer to 0.2. Compared to M2, the other metrics are weakly inversely correlated to

human judgment. Inverse correlation with human judgments for metrics that all assign higher

scores to better systems seems problematic. In the case of I-WAcc, we would go as far as stating

a near-absence of correlation. It seems the very conservative approach adopted for I-WAcc does

not correspond to the notion of quality that our judges worked out for themselves.

As can be seen, the switch to β = 0.5 from β = 1.0 for the CoNLL-2014 shared task was

a good choice. A higher correlation can be achieved by weighting precision even higher with

β = 0.25 and the maximum is reached for β = 0.18. However, correlation drops sharply for

Chapter 4. Evaluation Metrics 50

0.00 0.25 0.50 0.75 1.00

0.55

0.60

0.65

0.70

0.75

Values of β

ρ

0.00 0.25 0.50 0.75 1.00

0.60

0.65

0.70

Values of β

r
Annotator1

Annotator2

Combined

Figure 4.4: Spearman's ρ and Pearson's r correlation of M2 with human judgment w.r.t. β.
Dashed line marks o�cial CoNLL-2014 choice β = 0.5.

1 2 3 4 5 6 7 8 ρ ρ̄

1 � .70 .31 .76 .74 .19 .62 .48 .70

.72

2 .72 � .77 .84 .90 .57 .59 .64 .93
3 .53 .89 � .66 .70 .58 .42 .64 .63
4 .82 .79 .69 � .91 .42 .67 .54 .91
5 .65 .85 .82 .87 � .63 .63 .51 .93
6 .32 .71 .67 .56 .86 � .63 .39 .42
7 .72 .74 .57 .76 .72 .63 � .63 .76
8 .64 .85 .86 .69 .72 .57 .75 � .60

r .67 .93 .82 .87 .92 .66 .80 .82 �
r̄ .80

Table 4.9: Inter-annotator correlation (Spearman's ρ above the diagonal, Pearson's r below)
between rankings computed for individual judges.

β = 0.1 which adds risk to choosing a good value. The lack of positive correlation for the MT-

metrics is surprising in the light of improvement that results from a shift towards precision for

M2, as for instance BLEU is based on precision.

Figure 4.4 contains detailed plots of ρ and r with regard to β within the [0, 1] range. The

values of ρ and r hardly change for β > 1. As the CoNLL-2014 test data included annotation

from two annotators, we plot correlation w.r.t β for both annotators separately and for the

o�cial combined gold standard. In the case of Spearman's ρ alternative error annotations leads

to higher correlation values. Based on the plots we would recommend a settings of 0.2 ≤ β ≤ 0.3.

It is of course unclear whether this conclusion can be generalized across other shared tasks or

languages.

Inter-annotator correlations of rankings computed for individual judges (Table 4.9) can be

treated as human-level upper bounds for metric correlation. The penultimate column and row

contain correlations of rankings for individual judges with rankings computed from all judges

minus the respective judge. The last column and row contain the respective weighted (w.r.t. judg-

ments per judge) average of these correlations. These averages can be interpreted as approximate

correlations of rankings produced by new human judges with the current ranking. With values

Chapter 4. Evaluation Metrics 51

between 0.60 and 0.93 (with one outlier at 0.42) it seems that the performance of M2 is close to

the range of human capabilities.

4.4 Summary

The choice of automatic evaluation metric is an important decision, which in�uences the progress

in the �eld. All foregoing shared tasks in automated grammatical error correction use automatic

metrics to determine the quality of the participating systems. We have successfully adapted

methods from the WMT human evaluation campaigns to GEC and shown that the commonly

used parameters for standard metrics in these shared tasks may not be optimal. Nevertheless,

the MaxMatch metric turned out to be best correlated with human judgments among tested

metrics. The maximum is reached for β = 0.18. This justi�es empirically the shift from F1.0 to

F0.5 between CoNLL-2013 and CoNLL-2014 shared tasks.

In experiments presented in the remainder of this thesis, we use the M2 metric with F0.5-

score as our main evaluation metric. This allows for an meaningful comparison to the systems

participating in the shared task and, more importantly, to the state-of-the-art results reported

on the CoNLL-2014 test set in follow-up research.

Chapter 5

Grammatical Error Correction Using

Statistical Machine Translation

The application of statistical machine translation to grammatical error correction has been

reported as early as 2006 (Brockett et al.). Recently, it has become a popular approach that is

used in systems achieving state-of-the-art results. In this chapter we present our contribution to

GEC by machine translation using the Moses toolkit (Koehn et al., 2007)1. Two important ideas

are introduced: parameter tuning towards the task-speci�c evaluation metric and the exploration

of di�erent dense feature functions. We �nd that a bare-bones phrase-based SMT setup with

proper optimization outperforms all previously published results for the CoNLL-2014 test set by

a large margin while being trained on the same, publicly available data.

The chapter is organized as follows. Section 5.1 provides a background on the phrase-

based statistical machine translation. In Section 5.2, we introduce task-speci�c feature functions

used in experiments. Training and test sets are described in Section 5.3. The experiments on

tuning and optimization of SMT-based GEC models, using additional task-speci�c features, and

utilizing additional parallel and monolingual data are presented in Section 5.4. We summarize

in Section 5.5.

5.1 Statistical machine translation

The objective of machine translation is to translate an input sentence S in one language into an

output sentence T̂ in another language, which is the most probable translation of S:

T̂ = arg max
T

p(T |S).

The process of �nding the most probable translation is known as decoding.

In phrase-based statistical machine translation (Koehn et al., 2003), the decoder translates

phrases (strings of words) then concatenates the translations together into a sentence. Hypothe-

ses are generated from the phrase translation table (or phrase table), which consists of potential

translations of phrases and their probabilities (translation options). The probabilities are learnt

from parallel training data using word-to-word alignment between source and target sentence

pairs.

1The chapter presents an extended work originally published in Junczys-Dowmunt and Grundkiewicz (2014)
and Junczys-Dowmunt and Grundkiewicz (2016).

53

Chapter 5. Grammatical Error Correction Using SMT 54

5.1.1 Log-linear model

The currently dominant approach in phrase-based machine translation is the use of log-linear

combinations of feature functions to model the probability p(T |S):

p(T |S) =
N∏
i=1

hi(T |S)λi ,

log p(T |S) =
N∑
i=1

λi log hi(T |S),

where hi is a feature function with the corresponding feature weight λi, andN is the total number

of feature functions. Typically, two types of features are distinguished: stateless features that

make independence assumption at the boundaries between phrases, and stateful features that

cross phrase boundaries. One may de�ne features of varying complexity that depend on any

properties of the source and hypothesis sentences.

In Moses (Koehn et al., 2007), standard stateless features de�ned for each phrase pair are:

probability of the target phrase given the source phrase, probability of the source phrase given

the target phrase, word-level probability of the target phrase given words in the source phrase,

and vice versa. Other common features include penalties on the number of phrases used, the

number of words on the target side of a phrase, and the number of unknown words.

Stateful features, in contrast to stateless features, depend not only on the current phrase

translation, but also on prior translation decisions using Markov chain rule. A common stateful

feature is the probabilistic n-gram language model, which estimates the probability of the target

sentence independently of the source sentence.

5.1.2 Model training and tuning

Model parameters, i.e feature values and feature weights, are estimated from training data.

Most feature parameters are learnt from a corpus of parallel text, although language models are

estimated on the target-side language only.

The feature weights λ of the log-linear model are tuned on a development set usually smaller

than the training corpus with regard to the chosen evaluation method. The most commonly

used optimization algorithm for this purpose is Minimum Error Rate Training (MERT) (Och,

2003).

Moses comes with tools that can tune parameter vectors according to di�erent MT tuning

metrics. The default combination is MERT and BLEU (Papineni et al., 2002). Skipping param-

eter vector tuning can be perceived as methodologically incorrect as likely suboptimal results

from the untuned systems make the comparison of various system con�gurations untrustworthy.

Researchers applying SMT to grammatical error correction often ignore the proper tuning

procedure in their systems, which is incorrect. The exceptions are Brockett et al. (2006) and

Susanto et al. (2014), who mention minimum error rate training according to BLEU. Dahlmeier

and Ng (2012a) build a custom beam-search decoder for GEC and perform parameter tuning

with M2
1.0. The authors �nd PRO (Hopkins and May, 2011) to work better with M2 than MERT.

Their specialized decoder is compared to Moses that has been tuned with BLEU, which may not

be a fair comparison (as we will show in Section 5.4.1). None of the CoNLL-2013 SMT-based

Chapter 5. Grammatical Error Correction Using SMT 55

Source phrase Target phrase dLD dD dI dS

a short time . short term only . 3 1 1 1
a situation into a situation 1 0 1 0
a supermarket . a supermarket . 0 0 0 0
a supermarket . at a supermarket 2 1 1 0
able unable 1 0 0 1

Table 5.1: Word-based Levenshtein distances and separated edit operations.

systems seems to use parameter tuning, even the winning system of Felice et al. (2014). For

Chinese error correction, Zhao and Ishikawa (2015) built a hierarchical SMT system tuned with

a linear combination of evaluation metrics using MERT. None of the papers on QALB shared

task for Arabic (Mohit et al., 2014a, Rozovskaya et al., 2015) mentions a task-speci�c tuning

procedure for SMT-based systems, which shows how commonly SMT frameworks have been used

in a black box manner for GEC-related tasks.

5.2 Feature functions

Feature engineering is essential in many machine learning applications. The standard features

in SMT are geared towards modeling and guiding the translation process.

In the GEC setting, the most natural units on which features can be de�ned seem to be

minimum edit operations that can be either counted or modelled with varying degrees of gener-

alization. That way, the decoder can be informed on several levels of abstraction how the output

di�ers from the input. In this section we introduce several stateless and stateful features that

try to capture edits in isolation or in context.

All features described in this chapter are dense features, i.e. features that contribute to the

overall score of each hypothesis.

5.2.1 Stateless features

Our stateless features are computed during translation option generation before decoding, mod-

eling relations between source and target phrases. They are meant to extend the standard

SMT-speci�c MLE-based phrase and word translation probabilities with meaningful phrase-level

information about the correction process.

Levenshtein distance: The edit distance between source and target phrases can be used as

a translation model feature. We use the word-based Levenshtein Distance (LD) (Levenshtein,

1966) that computes the minimum number of operations such as word insertion, deletion or

substitution, required to convert the source phrase into the target phrase. The count informs

the model how many transformations of a source phrase are needed for the correction to be

made. Examples of Levenshtein distance for pairs of phrases are presented in Table 5.1.

The Levenshtein distance can be also calculated on character-level as in Felice et al. (2014).

Edit operation counts: Edit operation counts are more informative than the Levenshtein

distance. We separately count numbers of deletions (D), insertions (I), and substitutions (S)

that transform the source phrase into the target phrase. Table 5.1 provides examples.

Chapter 5. Grammatical Error Correction Using SMT 56

Each edit operation count contribute to the log-linear model as a separate feature function,

which allows to weight di�erent edit operation types separately:

log p(T |S) =
N∑
i=1

λi log hi(T |S)

+ λDhD(T |S) + λIhI(T |S) + λShS(T |S).

To maintain additivity in the log-linear model, instead of using raw distance counts i, we use

exp(i) as scores in the translation model:

hLD = exp(dLD),

hD = exp(dD),

hI = exp(dI),

hS = exp(dS).

For both feature types, the total sum of counts for a sentence is roughly equal to the Leven-

shtein distance between the source and target sentence2.

5.2.2 Stateful features

Contrary to stateless features, stateful features can �look� at translation hypotheses outside their

own span and take advantage of the constructed target context. We experiment with several

LM-based features computed on various levels of generalization of the target: tokens, part of

speech tags, and automatic word classes. We also introduce edit-based stateful features in the

form of bilingual models.

N-gram language model: Language models are the most typical stateful feature in statistical

machine translation (Koehn et al., 2007) controlling the �uency of the output sentence. They

estimate how probable a text is with respect to a given corpus. The n-gram language model

calculates the probability of a target sentence T based on the previous n− 1 word context using

higher-order Markov models (Markov, 1960):

pLM(T) ≈
|T |∏
i=1

p(ti|ti−n+1, . . . , ti−1).

For our experiments, we built 5-gram language models with modi�ed Kneser-Ney smoothing

(Chen and Goodman, 1996) using KenLM (Hea�eld et al., 2013).

Part-of-speech n-gram language model: Language models can be estimated on target-side

factors such as morphosyntactic Part-of-Speech (POS) tags. Since the total number of distinct

POS tags is signi�cantly smaller compared to the number of words, a Part-Of-Speech Language

Model (POS LM) can be estimated for higher-order n-grams than for token-level LMs. Hence,

they are better at capturing long-distance dependencies in a sentence.

2The sum may be larger than the minimum edit distance between source and target sentence as edits cannot
be computed across phrase boundaries.

Chapter 5. Grammatical Error Correction Using SMT 57

Cluster id Most frequent words

1 is,was,has,had,about,became,did,began,said,does,wrote,means
36 of,for,with,on,from,at,after,into,during,between,over,while
37 even,much,very,long,great,good,little,personal,strong,too,real
42 government,political,war,Soviet,Christian,religious,party
45 London,England,Hall,Scotland,Wales,Victoria,Manchester,Kent,Town,Dublin
48 used,known,called,found,published,given,considered,developed
123 1,2,3,4,5,6,8,7,9,0,64,63,62,98,61,76,79,OH,93,89,74,105,101,450,WK
130 then,thus,therefore,hence,thereby,alternatively,presumably,nowadays

Table 5.2: Clusters of automatic word-classes.

We run the Stanford Log-linear Part-of-Speech Tagger3 (Toutanova et al., 2003) on Wikipedia

data to obtain part-of-speech sequences, then we trained a 9-gram language model with KenLM.

The tagset consists of 43 tags.

Word-class language model: Word-Class Language Models (WCLMs) are language models

estimated on automatically extracted word clusters (Brown et al., 1992). WCLM is meant to

work similarly to a LM trained on morphosyntactic POS tags. It is built on automatic word

clusters, which are extracted from plain texts using language-independent unsupervised machine

learning methods. Also, the number of word clusters can be adjusted to a speci�c task if needed.

Our word clusters are calculated with word2vec4 (Mikolov et al., 2013) based on theWikipedia

data used for language model training. We built 200-dimensional vectors of word embeddings

using default settings and grouped them into 200 clusters. Example clusters are presented in

Table 5.2.

We computed a 9-gram word-class language model from the Wikipedia data with all tokens

replaced with corresponding word cluster identi�ers.

Operation sequence model: Durrani et al. (2013, 2011) introduce the Operation Sequence

Model (OSM) for phrase-based statistical machine translation in Moses. These models are

Markov translation models estimated on a linear sequence of operations (o1, o2, . . . , oJ) generated

from the source sentence S, the target sentence T and their word-alignment:

pOSM(T, S) ≈
J∏
j=1

p(oj |oj−n+1, . . . , oj−1).

Operations de�ne steps that are needed to generate the sequence T from S. Typical operations

are: generate the target phrase t from the source phrase s, generate the source/target only,

generate identical word(s), insert a gap, jump forward or backward, etc. An example of a

generated operation sequence for token-based OSM is presented in Figure 5.3.

OSM integrates reordering operations and is perceived as a context-aware reordering model.

In our setting, we explicitly forbid reordering operations, which reduces the OSM to a context-

aware edition model. Translations between identical words are matches, translations that have

di�erent words on source and target sides are substitutions. Insertions and deletions work in

3http://nlp.stanford.edu/software/tagger.shtml
4https://code.google.com/p/word2vec/

http://nlp.stanford.edu/software/tagger.shtml
https://code.google.com/p/word2vec/

Chapter 5. Grammatical Error Correction Using SMT 58

Source nowadays , people are more health conscious .
Target nowadays , people have been more health conscious than before .
Operations _TRANS_nowadays_TO_nowadays _TRANS_,_TO_,

_TRANS_people_TO_people _TRANS_are_TO_have _INS_been
_TRANS_more_TO_more _TRANS_health_TO_health
_TRANS_conscious_TO_conscious _INS_than _INS_before
TRANS._TO_.

Table 5.3: Example of the operation sequence for OSM.

the same way as in original OSM. Gaps, jumps, and other operations typical for OSMs that

represent reordering do not appear.

We trained a 5-gram language model on operations generated from the source and target

sentences from the training data.

Bilingual neural language model: Neural network joint models (NNJMs) have been in-

troduced as a feature function in Moses by Devlin et al. (2014). These are bilingual language

models which augment feedforward neural language models (Bengio et al., 2003) with a source

context window. For a source sentence S and a target sentence T , the n-gram neural network

joint model with m-word source window de�nes a conditional probability distribution as:

PNNJM(T |S) ≈
|T |∏
i=1

p(ti|ti, . . . , ti−n+1,Smi),

where Smi is an m-word source window for a target word ti based on the word alignment between

sentences S and T .

We used the Neural Probabilistic Language Model Toolkit5 (Vaswani et al., 2013) to build a

5-gram language model with 9 source context words.

5.3 Training and test data

In this section we introduce data sets that we will use in further experiments. Next, we discuss

the di�erences between data sets in respect to measures based on edit frequencies.

5.3.1 Parallel data

NUCLE: We use the NUS Corpus of English in version 3.26. It serves as a training set and/or

development set. We evaluate our methods on the CoNLL-2013, CoNLL-2014 and GEC-10 test

sets. NUCLE data sets are summarized in Table 5.4.

Lang-8: We collecte all entries from �Lang-8 Learner Corpora v1.0�7 with English as the

learned language, we do not care about the native language of the user. Only entries for which

at least one sentence has been corrected are taken into account. Sentences without corrections

from such entries are treated as error-free and mirrored on the target side of the corpus. We

5http://nlg.isi.edu/software/nplm/
6http://www.comp.nus.edu.sg/~nlp/conll14st.html#nucle32
7The corpus has been released in December, 2012.

http://nlg.isi.edu/software/nplm/
http://www.comp.nus.edu.sg/~nlp/conll14st.html#nucle32

Chapter 5. Grammatical Error Correction Using SMT 59

Corpus Sentences Tokens

NUCLE 57,151 1,161,567
CoNLL-2013 Test Set 1,381 29,207
CoNLL-2014 Test Set 1,312 30,144
GEC-10 Test Set 1,312 30,144

Lang-8 NAIST 2,186,460 25,732,858
Lang-8 WEB 3,475,848 48,398,304

WikEd 24,392,765 554,926,293

Table 5.4: Statistics of parallel training data.

do not remove alternative versions of the correction for a single sentence. Eventually, we obtain

a corpus of 2,186,460 sentence pairs with 25,732,858 tokens on the uncorrected source side

(Table 5.4). We call this resource Lang-8 NAIST.

We create a larger version of the corpus by crawling Lang-8 for additional entries8. We

manage to nearly double the size of the corpus to 3,475,848 sentences with 48,398,304 tokens on

the source side. In Table 5.4, this joint resource is labeled as Lang-8 WEB.

WikEd: We use the WikEd Error Corpus as additional training data. Only sentences not

marked as potentially harmful are taken into account. After tokenization and true-casing of the

data, the resource consists of 24,392,765 sentences and 554,926,293 tokens on the source side.

5.3.2 Monolingual data

Wikipedia: We extracted all text from the English version of Wikipedia9. A total number of

ca. 213.08 million sentences is collected.

Common Crawl: We use the Common Crawl data made-available by Buck et al. (2014) and

select it with cross-entropy �ltering (Moore and Lewis, 2010) using the corrected NUCLE corpus

as seed data. This procedure is a domain adaptation technique, which aims at selecting sentences

the most similar to NUCLE data, and, as a side e�ect, decreases the size of the Common Crawl

data. We keep all sentence with a negative cross-entropy score, which resulted in roughly 300GB

of compressed text consists of ca. 59.13 billion of sentences. Statistics are presented in Table 5.5.

Corpus Sentences Tokens

Wikipedia 213.08 M 3.37 G
Common Crawl 59.13 G 975.63 G

Table 5.5: Statistics of monolingual training data.

5.3.3 Error rates

Learner error corpora di�er from one another in several aspects: essays are written by learners

with di�erent native language (L1) and language pro�ciency; texts cover various topics and

8Additional data were scrapped in March, 2014.
9Wikipedia database dump from December 2nd, 2013: http://dumps.wikimedia.org/enwiki/20131202/

http://dumps.wikimedia.org/enwiki/20131202/

Chapter 5. Grammatical Error Correction Using SMT 60

Corpus Sub. Del. Ins. WER SER

NUCLE 0.5646 0.2221 0.2134 0.0609 0.3760
CoNLL-2013 Test Set 0.6304 0.2172 0.1525 0.1476 0.8088
CoNLL-2014 Test Set 0.6341 0.1860 0.1799 0.1137 0.7466
GEC-10 Test Set 0.6352 0.1766 0.1882 0.1427 0.8453

Lang-8 NAIST 0.5565 0.1370 0.3064 0.2227 0.5827
Lang-8 WEB 0.5690 0.1421 0.2890 0.2095 0.8356

WikEd 0.6089 0.1645 0.2266 0.0819 1.0000

Table 5.6: Comparison of error rates in parallel corpora.

style; the annotation schemas among scienti�c centres building error corpora may vary, or even

annotators' preferences may have impact on the annotations of the same data sets (Bryant and

Ng, 2015).

Word Error Rate (WER) is a common metric for the performance of speech recognition or

machine translation systems. Even if it is not used as an evaluation metric in GEC, it can be

used to characterize error corpora. WER is de�ned as:

WER =
S +D + I

N
,

where S is the number of words substituted by a corrector, D is the number of deleted words,

and I is the number of inserted words. N is the total number of words in the corrected sentence.

Sentence Error Rate (SER) is de�ned as the fraction of sentences that contain one or more

edits, i.e.:

SER =
|sentences with ≥ 1 edits|

M
.

M is the total number of sentences in the data set.

Error rates, including distribution of substitutions, deletions and insertions, are presented

in Table 5.6. Edits are extracted with LCS algorithm (Maier, 1978). Results are calculated on

tokenized and true-cased sentences. Statistics for data sets annotated by two or more annotators

have been averaged.

The NUCLE corpus contains less edits than test sets from both CoNLL shared tasks, which

results in lower WER and SER. The Lang-8 corpus has a higher error frequency than NUCLE.

High SER in WikEd comes from the fact that we extracted only sentences containing one or

more edits. However, the lower WER in respect to high SER indicates shorter edits (in terms

of the number of words being a part of an edit) which can be more typical for errors made by

native-speakers. More than half of the edits in each corpus are substitutions, but the Lang-8

corpora contain more insertions. We observed that some corrected sentences in Lang-8 include

comments from annotators.

5.4 Experiments

We run our experiments using the phrase-based SMT system Moses (Koehn et al., 2007). Only

plain text data are used for translation model and language model training. When parameter

Chapter 5. Grammatical Error Correction Using SMT 61

B
as
el
in
e

Le
ve
ns
ht
ei
n

Ed
it
op
s.

A
ll
de
ns
e

36.0

38.0

40.0

42.0

M2

(a) Optimized using BLEU on the
CoNLL-2013 test set

B
as
el
in
e

Le
ve
ns
ht
ei
n

Ed
it
op
s.

A
ll
de
ns
e

(b) Optimized using M2 on the
CoNLL-2013 test set

B
as
el
in
e

Le
ve
ns
ht
ei
n

Ed
it
op
s.

A
ll
de
ns
e

average M2

centroid M2

(c) Optimized using M2 on 4
folds of error-rate-adapted NU-

CLE

Figure 5.1: Results on the CoNLL-2014 test set for di�erent optimization settings and feature
sets.

tuning is performed with the M2 metric, the tuning set is provided in the M2 format, which

contains error annotations that introduce external linguistic knowledge.

The translation model is built with standard Moses training script. Word-alignment models

are produced with MGIZA++ (Gao and Vogel, 2008). We restrict the word alignment training

to 5 iterations of Model 1 and 5 iterations of the HMM-Model as we saw no di�erences in

quality between this faster non-standard training sequence and the full MGIZA++ sequence

with iterations of Model 3 and 4. Phrase tables are binarized with the compact phrase table

(Junczys-Dowmunt, 2012). We do not use reordering models � the distortion limit is set to 0,

e�ectively prohibiting any reordering.

All systems use one 5-gram language model that has been estimated from the target side of

the parallel data available for translation model training and another 5-gram language model

based on Wikipedia. We combine multiple language models as features in the log-linear model

of Moses.

5.4.1 Tuning and optimization

In Figure 5.1 we present the results of three optimization scenarios for four feature function sets

each. Baseline systems have no additional task-speci�c features (i.e. Levenshtein distance, edit

operation counts, WCLM, POSLM, OSM, NNJM), which corresponds to a vanilla Moses setup.

Levenshtein systems use the word-based Levenshtein distance feature. Levenshtein distance has

been replaced by edit operation counts in systems described as Edit ops. All dense features

include OSM, WCLM, and edit operation features. Systems are retuned when new features of

any type are added.

Based on Clark et al. (2011) concerning the e�ects of optimizer instability, we report results

averaged over �ve tuning runs. For each experiment in Figure 5.1, we outline the range between

Chapter 5. Grammatical Error Correction Using SMT 62

the lowest and the highest M2 scores from individual tunings. The small horizontal bars indicate

the averaged M2 score.

Additionally, we compute parameter weight vector centroids as suggested by Cettolo et al.

(2011). They showed that parameter vector centroids averaged over several tuning runs yield

similar to or better than average results and reduce variance. We generally con�rm this for

M2-based tuning. In Figure 5.1 results for averaged weights vectors are marked as small circles.

These are chosen as the �nal results.

5.4.1.1 Tuning towards BLEU

As mentioned earlier, the default combination of optimization algorithm and evaluation metric

used to tune model parameters in Moses is MERT (Och, 2003) and BLEU (Papineni et al.,

2002). It might be tempting to use these out-of-the-box settings also for GEC, but this is not

an optimal solution if maximizing M2 score is the �nal goal.

Junczys-Dowmunt and Grundkiewicz (2014) have already shown that tuning with BLEU is

counterproductive in settings with M2 as the evaluation metric. For inherently weak systems

this can result in all correction attempts being disabled. This is due to MERT, which learns

to disallow all changes since they lower the similarity to the reference as determined by BLEU.

Systems with better training data, can be tuned with BLEU without su�ering this negative

e�ect. Despite these observations, Susanto et al. (2014) choose to tune the feature function

weights of their two SMT-based systems with BLEU and report state-of-the-art results.

We �rst successfully reproduce results of Susanto et al. (2014) for BLEU-based tuning on the

CoNLL-2013 test set as the development set (Fig. 5.1a), but got better results. We use similar

training data, i.e. NUCLE and Lang-8 NAIST corpora. Susanto et al. (2014) report scores for

their SMT-ML combinations of 37.90�39.39%. Repeated tuning runs place these scores within

the range of possible values for a purely Moses-based system without any speci�c features (35.19�

38.38%, Fig. 5.1a, baseline system) or with just the Levenshtein distance features (37.46�40.52%,

Fig 5.1b, Levenshtein system). Since the authors do not report results for multiple tuning steps,

the extend of in�uence of optimizer instability on their experiments remains unclear.

Even with BLEU-based tuning, we can see signi�cant improvements when replacing Lev-

enshtein distance with the �ner-grained edit operations, and another performance jump with

additional stateful features.

5.4.1.2 Tuning towards M2

We extended MERT with the capability of tuning with respect to M2. We re-implemented the

M2 metric in C++ and added it as a scorer to the Moses parameter optimization framework10.

Tuning directly with M2 (Fig. 5.1b) and averaging weights across �ve iterations, yields be-

tween 40.66% M2 for a vanilla Moses system and 42.32% for a system with best dense features.

Using the same training data and tuning data as the top-results reported for the CoNLL-2014

shared task to-date (39.39%), vanilla Moses outperforms these systems due to M2-tuning alone.

Task-speci�c features further increase that performance advantage.

Results of M2-tuned systems seem to be more stable than those by systems tuned towards

BLEU. Averaging weight vectors across runs to produce the �nal vector seems to be a good

10The C++ version of M2 scorer is available from the main Moses repository: https://github.com/moses-smt/
mosesdecoder

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder

Chapter 5. Grammatical Error Correction Using SMT 63

Algorithm 1 Training procedure using k-fold cross validation.

Input: Development set D (NUCLE), train set T (Lang-8 NAIST), the number of folds k (4),
the number of MERT runs n (5)

1: Divide D into approximately equally sized k parts Di

2: for each fold i ∈ {1 . . . k} do
3: Dtrain

i ← {Dj : j 6= i}
4: Dtune

i ← Di with adapted error rate
5: Ti ← T +Dtrain

i

6: Train model Mi using training data Ti
7: for j = 1 . . . n do
8: wi,j ← tune parameter weights in model Mi on D

tune
i

9: end for

10: end for

11: Tfinal ← T +D
12: Train �nal model Mfinal using training data Tfinal
13: for j = 1 . . . n do
14: wavgj ← average parameter weights wi,j for i ∈ {1 . . . k}
15: Evaluate model Mfinal using weights wavgj

16: end for

17: wavg ← average parameter weights wavgj for j ∈ {1 . . . n}
18: Evaluate model Mfinal using weights wavg

strategy: performance with the averaged weight vectors is either similar to or better than the

average number for �ve runs.

5.4.1.3 Choosing development sets

No less important than choosing the correct tuning metric is a good choice of the development

set. Among MT researches, there is a number of more or less well known truths about suitable

development sets for translation-focused settings: usually they consist of between 2000 and 3000

sentences, which should be a good representation of the testing data. The o�cial CoNLL-2013

test set consists of 1380 sentences, which might be barely enough for a translation-task, and it

is unclear how to quantify it in the context of grammar correction. The low word error rate

reveals that only 14.76% of the tokens are part of an erroneous fragment. This seems to be

very little signi�cant data for tuning an SMT system. We decided to take advantage of a larger

development set in the form of the entire NUCLE corpus, which consists of 57,151 sentences. So

far, NUCLE has only been used as translation model training data.

The word error rate of NUCLE is signi�cantly lower than in the CoNLL-2013 test set (6.09%

vs. 14.76%). We increase the error rate by greedily removing sentences from NUCLE until an

error rate of ca. 15% is reached. This procedure causes 23,381 of 57,151 sentences and most

error annotations to remain.

We further use a 4-fold cross validation: the NUCLE data is divided into four folds, and

each fold serves as a development set for parameter tuning, while the three remaining parts are

treated as translation model training data. The full Lang-8 NAIST corpus, which constitutes

the remaining training data as in the previous experiments, is concatenated with the NUCLE

training set, and four models are trained. Tuning is performed four times and the resulting

four parameter weight vectors are averaged into a single weight vector across folds. We repeat

Chapter 5. Grammatical Error Correction Using SMT 64

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

Baseline 43.00 16.06 32.20 48.97 26.03 41.63
+Levenshtein 44.09 16.50 33.04 49.79 25.51 41.83
+Edit ops. 44.41 16.99 33.57 49.84 26.35 42.30
+Levenshtein 45.63 16.90 34.06 51.02 26.17 42.88

+Edit ops. (char) 41.76 15.37 31.09 48.18 25.91 41.11

Baseline+Edit ops. 44.41 16.99 33.57 49.84 26.35 42.30
+POSLM 44.17 15.00 31.80 51.01 25.52 42.52
+WCLM 43.88 15.86 32.43 51.01 25.75 42.64

+POSLM 44.64 14.91 31.91 51.38 24.60 42.19

Baseline+Edit ops. 44.41 16.99 33.57 49.84 26.35 42.30
+NNJM 44.04 16.44 32.97 50.76 26.60 42.96
+OSM 46.47 17.31 34.76 50.73 26.27 42.77
+NNJM 45.07 17.16 34.01 50.55 27.16 43.12

Baseline+Edit ops.+WCLM+OSM 45.07 16.53 33.50 50.94 26.21 42.85

Table 5.7: The SMT system performance with various dense feature functions.

this procedure again �ve times, which results in 20 separate tuning steps. Final results on

the CoNLL-2014 test set are obtained using the full translation model with a parameter vector

average across �ve runs. The training procedure using k-fold cross validation is described in

Algorithm 1.

The CoNLL-2013 test set is not being used for tuning and can serve as a second test set.

As can be seen in Figure 5.1c, this procedure signi�cantly improves performance, also for the

baseline set-up (41.63%). The lower variance between iterations is an e�ect of averaging across

folds.

5.4.2 Experiments with additional features

We examined the usefulness of particular feature functions for the SMT-based GEC system and

summarized the results in Table 5.7. The baseline system uses two previously described language

models and no edit operation features.

Firstly, we inspect the combination of various edit-based features added to the translation

model (top part of Table 5.7). Adding word-based Levenshtein distance score to the baseline

system trained on NUCLE and Lang-8 data improves the system performance by +0.84%. Even

higher improvement is achieved with edit operation counts (+1.37%), or by combining both

features as four scores (+1.86%). However, the character-level edit operation counts decrease

the system output quality according to the two test sets.

Next, we examine POSLM and WCLM features (middle part of Table 5.7). Both are es-

timated on processed the Wikipedia texts. The baseline system already uses the token-based

language model trained on Wikipedia. Adding a LM trained on part-of-speech tags or auto-

matic word classes has only small e�ect on the system performance. Neither of the two increases

the F-score on CoNLL-2013 test set, whereas the improvement on CoNLL-2014 test set is not

signi�cant: +0.22% and +0.34% for POSLM and WCLM respectively.

Chapter 5. Grammatical Error Correction Using SMT 65

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

Baseline 36.07 11.30 25.07 42.93 18.64 34.05
+WikiLM 43.00 16.06 32.20 48.97 26.03 41.63
+CCLM 47.58 14.50 32.68 58.91 25.05 46.37

Dense 38.03 14.27 28.53 42.95 22.78 36.49
+WikiLM 45.07 16.53 33.50 50.94 26.21 42.85
+CCLM 50.39 16.67 35.88 59.98 28.17 48.93

Table 5.8: E�ects of adding a large-scale language model to SMT system.

Finally, we compare the bilingual language models. On CoNLL-2013 test set the best results

are achieved with OSM, whereas NNJM and the combination of the two gives slightly better

results on CoNLL-2014 test set. Both OSM and NNJM have been shown to be e�ective for

translation task with comparable results between these two joint models (Durrani et al., 2015).

We actually con�rm this for the GEC task.

The last row in Table 5.7 presents the scores achieved for the system that have been used

in optimization experiments in the previous section. This system uses edit operation counts,

WCLM and OSM.

5.4.3 Increasing the size of language model

We examine the impact of the size of a language model on the system performance. Until now

we restricted monolingual data in our experiments to Wikipedia, which is a similar setting to

the one used by Susanto et al. (2014). However, systems from the CoNLL-2014 shared task were

free to use any publicly available data.

We use the English resources from CommonCrawl data (Buck et al., 2014) to build a web-

scale language model. We trained a 5-gram language model using KenLM with heavy pruning,

which resulted in a manageable 21G binary model11.

Table 5.8 summarizes the results before and after adding the Wikipedia or Common Crawl

language models to the baseline system with and without dense features. Recall that the baseline

system uses NUCLE and Lang-8 NAIST as training data and a language model trained on the

target-side of the data. Dense features include edit operation counts and OSM.

Adding a web-scale language model increases the precision of the system on both test sets,

and thus allows to achieve the highest F-score. Recall, however, is slightly decreased with CCLM

when no dense features are used.

The relative performance gain from the CCLM is higher for the system using dense features

than for the bare system (+2.38% vs. +0.48% for the CoNLL-2013 test set). This suggests that

a web-scale monolingual data allows the system to take the full advantage of the task-speci�c

features.

11The language model is available for download from https://github.com/grammatical/

baselines-emnlp2016

https://github.com/grammatical/baselines-emnlp2016
https://github.com/grammatical/baselines-emnlp2016

Chapter 5. Grammatical Error Correction Using SMT 66

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

NUCLE+WikiLM 44.43 13.03 29.98 47.77 18.05 35.94
+Lang-8 NAIST 45.07 16.53 33.50 50.94 26.21 42.85
+Lang-8 WEB 43.58 16.09 32.49 53.56 29.59 46.09

NUCLE+CCLM 50.69 13.75 32.98 56.13 18.31 39.72
+Lang-8 NAIST 50.39 16.67 35.88 59.98 28.17 48.93
+Lang-8 WEB 48.73 17.13 35.60 61.74 30.51 51.25

Table 5.9: E�ects of adding more parallel training data to SMT system.

5.4.4 Additional parallel data

The generation of translation options in a phrase-based SMT system is restricted to the phrases

that appeared in training data, and thus are included in the phrase table. Besides the addition

of a web-scale language model, we also examine the e�ects of large-scale training data for GEC

translation models. The system is re-trained every time additional parallel data is added. We

summarize the results in Table 5.9.

The additional large-scale in-domain data (Lang-8 WEB) originates from the social learner's

platform Lang-8, same as the Lang-8 NAIST corpus, but consist of ca. 1.2M additional sentence

pairs. In most experiments increasing the amount of parallel training data results in higher

recall. While adding the larger Lang-8 corpus causes a respectable gain when used with the

Wikipedia language model (+3.24%), the web-scale language model seems to cancel out part of

the e�ect (+2.32%).

The system trained on Lang-8 WEB data with the Common Crawl language model gives

the highest results on the CoNLL-2014 test set reported so far in this chapter. The lack of

improvement for the CoNLL-2013 test set comes from the drop in recall. It can be caused by

the fact that the test set is annotated only by a single annotator and thus may contain less

diversi�ed corrections than the other test set or even miss some corrections.

5.4.5 Incorporating additional out-of-domain data

It is a common scenario in SMT when less in-domain training data is available than out-of-domain

data. The WikEd error corpus is out of domain for the ESL grammatical error correction, but

it is ca. 20 times larger than the Lang-8 NAIST (24.4M vs 1.2M of sentence pairs). We examine

the usefulness of this resource for GEC task.

We experiment with incorporating the out-of-domain data using the so-called phrase table

�ll-up method (Bisazza et al., 2011). It is a domain adaptation method that combines two

translation models in the form of phrase tables to improve model coverage. Given the translation

model learnt from in-domain data TI which assigns a feature vector of scores φI(s, t) for each

pair of source s and target t phrase, and the translation model estimated from out-domain data

with feature vector φO(s, t), the �ll-up model TI∪O is de�ned as:

Chapter 5. Grammatical Error Correction Using SMT 67

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

Lang-8 NAIST + WikiLM 45.07 16.53 33.50 50.94 26.21 42.85
+PT �ll-up WikEd 44.00 17.48 33.76 50.46 29.02 43.96

Lang-8 NAIST + CCLM 50.39 16.67 35.88 59.98 28.17 48.93
+PT �ll-up WikEd 44.52 18.43 34.70 57.93 31.73 49.72

Table 5.10: Results for the phrase table �ll-up with out-of-domain data.

∀(s, t) ∈ TI ∪ TO :

φI∪O(s, t) =

{
(φI(s, t), IndI) if (s, t) ∈ TI
(φO(s, t), IndO) otherwise

.

The entries of TI∪O correspond to the union of the two phrase tables. The scores are taken

from the more reliable in-domain phrase table whenever possible. Ind is an additional feature

which determines, which translation model the given phrase pair originates from, and has values

of either exp 0 or exp 1. The weight assigned to Ind acts as a scaling factor for the out-of-domain

phrases. It is optimized during the MERT tuning procedure together with the rest of the weights.

As presented in Table 5.10, �lling-up the phrase table with WikEd data results in a per-

formance gain on both test sets if a system is supplied with WikiLM. The method improves

the recall at the little cost of precision. For the system using larger language model, a higher

performance is only observed on the CoNLL-2014 test set.

5.5 Summary

This chapter described the application of statistical machine translation to automatic grammat-

ical error correction. Despite the fact that this approach is among the most popular methods in

GEC today, few papers that report results for the CoNLL-2014 test set seem to have exploited

its full potential. An important aspect when training SMT systems that one needs to tune

parameters towards the task evaluation metric seems to have been under-explored.

We have shown that a Moses SMT system trained on publicly available data achieves state-

of-the-art results on the CoNLL-2014 test set. Proper M2-based tuning contributed the most

to these results. Better development sets and an optimization procedure using cross validation

allowed to obtain more stable results.

With this tuning mechanism available, task-speci�c features have been explored that bring

further improvements, such as edit operation counts of phrase pairs, and various language models.

None of the explored features require complicated pipelines or re-ranking mechanisms. Instead

they are a natural part of the log-linear model in phrase-based SMT. It is therefore quite easy

to reproduce our results and the presented systems may serve as new baselines for automatic

grammatical error correction.

Chapter 6

Discriminative Models for SMT-based

Grammatical Error Correction

In the previous chapter, we have shown that an SMT system can achieve high performance in

the GEC task and is able to correct a wide range of grammatical errors. This is possible due to

the generative nature of the phrase-based statistical machine translation model. Historically, the

most successful approaches in GEC were based on discriminative classi�cation methods targeting

speci�c error types. In this chapter, we study possibilities to improve the discriminative power

of the SMT-based GEC system developed so far1. This is the �rst attempt to apply sparse

features to automatic grammatical error correction. We show that a generative SMT system

using task-speci�c discriminative features derived from correction patterns outperforms best

reported results for any paradigm in GEC.

In Section 6.1, we introduce two discriminative models and show how they can be integrated

with the log-linear model. Section 6.2 describes feature templates used to generate feature sets

for each method. In Section 6.3, we present our experiments, which lead to new state-of-the-art

results. A detailed evaluation and comparison of developed systems with results reported in the

literature are presented in Section 6.4. We conclude in Section 6.5.

6.1 Discriminative models

The modern phrase-based statistical machine translation model draws on generative learning.

A generative method generates data by estimating a distribution of the model parameters under

speci�c assumptions and using this to predict unseen data. It assumes that the learned model

represents the real model closely. A discriminative method, in contrast, models the boundary

between possible outputs by depending on the observed data. It makes fewer assumptions on the

distributions. For some prediction tasks, discriminative methods tend to outperform generative

methods (Bouchard and Triggs, 2004, Ng and Jordan, 2002), especially when a su�cient quantity

of training examples is available.

In phrase-based SMT, discriminative information is added in the form of discriminative

lexicons to help address the challenges of sense disambiguation and morphological coherence

1The chapter based on �ndings described in Grundkiewicz and Junczys-Dowmunt (2015) and Grundkiewicz
and Junczys-Dowmunt (2017), and presents extended work originally published in Junczys-Dowmunt and Grund-
kiewicz (2016).

69

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 70

(Tamchyna et al., 2016). We experiment with two di�erent methods for including discriminative

information into the phrase-based SMT system:

• A cost-sensitive multi-class classi�er, which contributes to the log-linear model as a single

feature function.

• Sparse features, which extend the log-linear model by a large number of binary feature

functions.

Both methods are described in the following sections.

6.1.1 Discriminative classi�er

Here, we use a discriminative classi�er to score potential corrections of each source phrase during

decoding. Classi�er scores are used as a separate feature function in the log-linear model. It

contributes to the overall score of each potential correction of the given source phrase similarly to

all dense feature functions described earlier. The classi�er is trained outside the training process

of the SMT system on examples extracted from the phrase table using speci�cally-designed

features.

In particular, we model the classi�er output given the source sentence S, the target sentence

T and their source-side and target-side phrasal segmentations2, (s1, . . . , sn) and (t1, . . . , tm),

respectively. The translation probability pVW (T |S) is the product of phrasal translation proba-

bilities:

pVW (T |S) ∝
∏

(si,ti)∈(T,S)

pVW (ti|si, S).

Target-side phrasal probabilities pVW (ti|si, S) are conditioned on the source phrase (obtained

from the word alignment between S and T) and the full source sentence. The latter provides an

additional context, which is used to build a vector of classi�er features.

The phrasal probabilities for each target phrase are de�ned using a weighted feature vector

and normalized over possible corrections:

pVW (ti|si, S) =
exp
(
w · fφ(ti, si, S)

)∑
t′i∈PT (si)

exp
(
w · fφ(t′i, si, S)

) .
The function fφ(ti, si, S) returns a vector of classi�er features, and w is a vector of corresponding

feature weights. Feature weights are estimated from the training data. The classi�er prediction

values are normalized over a set PT (si) of possible phrasal translations for the source phrase si.

The normalized exponential function (Bishop, 2006) is used, so that all values are in the range

of [0, 1] and sum up to 1.

The discriminative classi�cation model contributes to the log-linear model as a single feature

function hVW = pVW with a single parameter weight:

log p(T |S) =
N∑
i=1

λi log hi(T |S)

+ λVW log hVW (T |S).

2The word alignment is skipped for simplicity.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 71

Hence, the SMT system has access only to the �nal score of the classi�er, not to the classi�er

features.

The requirement for the classi�er is to predict scores for all target phrases, which are too

numerous to form a set of labels (or classes) of reasonable size3. We use the cost-sensitive

multi-class classi�er with Label Dependent Features (LDF) from Vowpal Wabbit4 for that task.

In the cost-sensitive scenario (Sammut and Webb, 2011), examples are not assigned single

labels. Instead, di�erent costs for each label are used. In our case, while training the classi�er,

the positive examples representing the ground truth translation phrases get a cost of 0 and all

negative examples (i.e. target phrases possible for the given source phrase, but not chosen) get

a cost of 1. Due to label dependent features, no label is provided to the classi�er5. Instead, the

classi�er features are designed to describe each target phrase alternative accurately, so that the

classi�er is able to distinguish between positive and negative examples. During prediction, in

turn, m binary classi�ers are used in one-against-all framework (Sammut and Webb, 2011) to

produce the score.

6.1.2 Sparse features

We also tested a method for incorporating a discriminative component into our SMT-based

GEC system, we use sparse features. Sparse features have been introduced to syntax-based and

phrase-based statistical machine translation (Chiang et al., 2009, Hasler et al., 2012) leading

to some improvements in translation quality. They are intended to make the model aware of

speci�c phenomena through the use of discrete, and most commonly, binary values. In the case

of grammatical error correction, for instance, we may want to design a binary feature, which is

active if a particular determiner is replaced by another, e.g. an → the. Such a feature describes

a �correction pattern�, which may help discriminate between good and bad corrections.

Each sparse feature contributes to the log-linear model as a separate feature function hCP,j
with its own weight λj :

log p(T |S) =
N∑
i=1

λi log hi(T |S)

+
M∑
j=1

λj log hCP,j(T |S).

Our sparse features are binary-valued, and indicate the existence of a correction pattern

between the source and translation sentences, i.e.:

hCP,j(T |S) = 1C(T,S)(cj) =

{
1 if cj ∈ C(T, S)

0 otherwise
.

C is the set of all observed correction patterns, and C(T, S) is the set of patterns between the

given sentences S and T . The total number of correction patterns is |C| = M .

The feature weights λ decide which features are useful for making corrections and which are

not. The higher the absolute value of the weight λ is, the more signi�cant correction pattern

3The number of unique target phrases in the phrase table trained on the NUCLE and Lang-8 NAIST corpora,
�ltered for the CoNLL test sets, and limited to the top 50 target phrases for each source phrase is ca. 913,000.

4https://github.com/JohnLangford/vowpal_wabbit
5Label dependent features and LDF format itself are described more thoroughly in Section 6.2.1.

https://github.com/JohnLangford/vowpal_wabbit

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 72

becomes. Weights of sparse features are trained during tuning. The parameter tuning algorithm

MERT (Och, 2003), which we used for tuning dense features, does not support a large number of

sparse features, which can easily grow to hundred of thousands or millions. Instead, we use the

MIRA (Cherry and Foster, 2012) algorithm and experiment with other algorithms, as described

in Section 6.3.2

It should be noted, that no information from the translation model is used while generating

sparse features. This di�ers from the discriminative classi�er, which uses training examples

obtained from the phrase table. Sparse features are extracted directly from a pair of the source

and target sentences during decoding. The �nal set of sparse features is created during the

tuning procedure and consists of correction patterns observed in the tuning set. This requires a

larger development set than that needed for dense features, and �ts to our NUCLE-based tuning

procedure introduced in Section 5.4.1.3.

By adding a plethora of sparse feature functions, we improve the discriminative power of the

translation model.

6.2 Feature templates

All features, which we use for discriminative training, are automatically constructed features

based either on n-grams or on edit operations. Similar to features exploited for SMT, the

discriminative features are not modeled with a speci�c language or error type in mind. They

are language-independent in the sense that they are not build on top of linguistic phenomena

and can be easily extracted for most languages.

This stands in contrast to the line of research using the classi�cation approach, for which

extensive feature engineering to GEC has been applied (De Felice and Pulman, 2008, Rozovskaya

and Roth, 2014, Rozovskaya et al., 2014b). However, in Grundkiewicz and Junczys-Dowmunt

(2015), we have shown that simple n-gram-based features can be as e�ective as linguistically-

motivated heuristics in the case of article and preposition error correction. This has motivated

us to use features in a similar fashion in SMT.

6.2.1 Label-dependent features

We make use of multi-label classi�cation with label-dependent features provided by Vowpal Wab-

bit while creating features for discriminative classi�ers. All classi�er features are divided into

two groups:

• Label-Independent (LI) features, which are generated for the source phrase and use addi-

tional context information from the source sentence.

• Label-Dependent (LD) features, which are generated for the particular target phrase using

source phrases and the source sentence context, as well as target phrases.

The label-independent features are generated from the following templates:

• Source phrase: An indicator of the source phrase, i.e. the original phrase being corrected.
It is created by concatenating either words or word classes within the source phrase.

• Source words: A set of words from the source phrase without order preservation.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 73

• Source window: A set of words preceding or following the source phrase. The relative

order in relation to the source phrase is preserved. Left and right context sizes do not

exceed 3.

• Word n-grams: A set of word n-grams around the source phrase. All n-grams have

lengths between two and four and include at least one word from the source phrase. We

extract n-grams of words and automatic word classes.

For example, for the phrase �new problem� in the sentence �Then a new problem comes out

.�, we generate the following label-independent features on the word level:

sind=new_problem

sword=new

sword=problem

swin(-2)=then

swin=(-1)=a

swin(1)=comes

swin(2)=out

swin(3)=.

2gram(2)=a_new 2gram(3)=new_problem 2gram(4)=problem_comes

3gram(2)=then_a_new 3gram(3)=a_new_problem 3gram(4)=new_problem_comes

3gram(5)=problem_comes_out

4gram(2)=<s>_then_a_new 4gram(3)=then_a_new_problem 4gram(4)=a_new_problem_comes

4gram(5)=new_problem_comes_out 4gram(6)=problem_comes_out_.

The set of label-dependent features includes features obtained from the following templates:

• Target phrase: An indicator of the target phrase, i.e. the potential correction of the

phrase source.

• Edit operation counts: A set of the counts of inserted, deleted and substituted words

between the source and target phrase.

• Edit operations: A set of inserted, deleted or substituted tokens that took part in the

edit of the source and target phrase. Edit operations are built from words or automatic

word classes.

For example, for the edit pair (�new problem�, �a new problem had�) for the sentence �Then

a new problem comes out .�, we generate the following label-dependent features on the word level:

tind=a_new_problem_had

ecount(del)=0

ecount(ins)=2

ecount(sub)=0

ecount(eql)=2

eops(ins)=a

eops(ins)=had

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 74

The process of extracting the �nal set of features for the classi�er is as follows: �rstly, for each

source phrase si, we generate a set of label-independent (LI) features. Then, for each possible

correction ti of si provided by the phrase table PT , we generate a set of label-dependent (LD)

features. Next, we create the cartesian product of the two feature sets LI × LD and add them

as new features. All �nal features are binary.

Thanks to the cartesian product of the two namespaces, some desired features are created

automatically. For example, Source phrase and Target phrase feature templates produce an

indicator of the pair of the source and target phrase, or Source window and Edit operations

templates create a set of edit operation features with the left/right context included.

6.2.2 Sparse edit operations

Introducing stateless dense features (Chapter 5, Section 5.2.1) based on �ner-grained edit oper-

ations improved performance of the SMT system. We extend that idea by sparse features that

describe speci�c correction patterns with and without context.

For each pair of the source and target sentences we extract all edits at token level based

on the Levenshtein distance matrix. Each sparse feature contains the type of the basic edit

operation (i.e. substitution, deletion or insertion) and orthographic forms of tokens that took

part in the edit. A feature might additionally include the left and/or right context of a �xed size.

Similarly as in the case of the features of the discriminative classi�er, the context annotation

comes from the erroneous source sentence, not from the corrected target sentence. We further

investigate di�erent source factors � elements taking part in the edit operation or appearing in

the context can either be word forms (factor 0) or word classes (factor 1).

In particular, we use the following sparse feature types:

• E0: A set of basic edit operations on words, no context.

• E1: A set of basic edit operations on word classes, no context.

• E0C10: A set of edit operations on words with left/right context of maximum length 1

on words.

• E1C11: An edit operation on word classes with left/right context of maximum length 1

on word classes

• E0C11: An edit operation on words with left/right context of maximum length 1 on word

classes.

• E0C21: An edit operation on words with left/right context of maximum length 2 on word

classes.

Fo example, for the pair of the erroneous and corrected sentences (�Then a new problem

comes out .�, �Hence , a new problem surfaces .�), we generate the following sparse features

that model contextless edits (matches are omitted):

sub(Then,Hence)

ins(,)

sub(comes,surfaces)

del(out)

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 75

and sparse features with one-sided left or right or two-sided context:

<s>_sub(Then,Hence)

sub(Then,Hence)_a

Hence_ins(,)

ins(,)_a

problem_sub(comes,surfaces)

sub(comes,surfaces)_out

comes_del(out)

del(out)_.

<s>_sub(Then,Hence)_a

Hence_ins(,)_a

problem_sub(comes,surfaces)_out

comes_del(out)_.

When using sparse features with context, the contextless features are included.

6.3 Experiments

We compare the systems with discriminative components to our best dense-feature systems

developed in Chapter 5. Both extensions are added on-top of best dense features, which we

refer to as best dense. The best dense system features include edit operation counts, operation

sequence model, and a language model built from the corrected sentences from training data.

We report results for both additional language model sets: 5-gram LM on words and 9-gram LM

on word classes, which are built respectively on Wikipedia texts (WikiLM) and Common Crawl

data (CCLM). We also compare to the baseline system, which uses no dense features.

As training data, we use Lang-8 NAIST and NUCLE corpora. We follow the 4-fold cross

validation described in Section 5.4.1.3, which uses NUCLE as a development set. Tuning is

performed in 20 separate steps in total, and the �nal results are obtained with averaged parameter

vector weights. The larger development set facilitates tuning for large number of discriminative

features, especially in the case of sparse features.

6.3.1 Multi-class discriminative classi�er

To train the classi�er, we �rstly generate label-independent and label-dependent features for

training data on the basis of the phrase table from the SMT system trained on Lang-8 NAIST

and NUCLE corpora. The maximum number of target phrases for each source phrase is limited

to 50. While generating features for the classi�er, we use leave-one-out technique to avoid

over�tting, i.e. for each source phrase, we skip a random target phrase and no label-dependent

features are generated for that.

Next, the classi�er is trained using cost-sensitive multi-class classi�cation with label-dependent

features provided by the Vowpal Wabbit toolkit. We use the logistic cost function and enable

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 76

CoNLL-2013
System Acc P R F0.5

VWtok 94.63 58.77 7.07 23.88
VWwc 94.70 63.43 8.42 27.49
VWedits,wc 94.77 71.97 7.81 27.23

Table 6.1: The classi�er performance on CoNLL-2013 with di�erent feature sets.

quadratic features, which perform the cartesian product between label-independent and label-

dependent features described in Section 6.2.16. We train the model for 2 epochs, and then the

trained model is added to the Moses con�guration as an additional feature function.

A single classi�er model trained on the Lang-8 NAIST corpus is used for each of the 4 folds

in the cross validation scheme. For the �nal model, we additionally resume training on NUCLE

for one epoch. Vowpal Wabbit supports continued training by saving extra learning parameters.

We use the MERT tuning algorithm to tune weights for all feature functions.

6.3.1.1 External evaluation

We can evaluate the classi�er performance independently of the SMT system by measuring how

e�ectively it predicts correct target phrases on unseen data. For that purpose, we �rstly generate

all features from the CoNLL-2013 test set as during the training, not using the leave-one-out

method. Then, the trained classi�er is run on the generated features to produce predictions.

We use the WAS evaluation scheme (introduced in Chapter 4, Section 4.2.1) for evaluation:

the positive class consists of that phrases which require to be corrected according to the gold

standard annotations, other phrases (which form the majority) belongs to the negative class.

Results for three di�erent feature sets are presented in Table 6.1.

The �rst feature set VWtok uses all features described earlier except edit operations, and only

lexical word forms are used for generation. VWwc additionally uses features on word classes.

The last feature set also includes edit operations. We refer to the set as VWedits,wc.

All three feature sets improved accuracy over the baseline of 94.47%, which is calculated for

unchanged input. Improvements of accuracy are minor (0.16�0.30%). In general, precision of the

classi�ers is relatively high, but recall is low. Each of the consecutive feature sets signi�cantly

improves precision. However, adding edit operation features slightly decreases recall, and the

best F0.5 score is achieved for VWwc.

6.3.1.2 Results for VW feature function

In �nal experiments, we use two feature sets trained on word forms and word-class features

without (VWwc) or with (VWedits,wc) edit operation features. Results are presented in Table 6.2.

When the Wikipedia language model is used, the discriminative feature function gives small

improvements in F0.5 score for both test sets. The exception is VWwc on the CoNLL 2013 test

set. Surprisingly, the system with VWedits,wc feature set shows better results than the system

that uses the feature set without edit operations on the CoNLL 2013 test set, even though its

6The complete command used to train VW is: vw �hash all �loss_function logistic �noconstant -b

26 -q st �csoaa_ldf mc -f model.vw. Option -b sets the bit precision, -q st performs the carthesian product
between two namespaces, �noconstant eliminates the constant feature that exists by default in VW, and �hash

all hashes all feature identi�ers increasing the performance time.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 77

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

Best dense+WikiLM 45.07 16.53 33.50 50.94 26.21 42.85
+VWwc 45.15 16.15 33.22 51.50 26.02 43.07

+VWedits,wc 45.06 16.73 33.66 51.02 26.34 42.97

Best dense+CCLM 50.39 16.67 35.88 59.98 28.17 48.93

+VWwc 49.53 16.87 35.71 59.73 28.23 48.83
+VWedits,wc 51.18 16.30 35.84 59.83 27.50 48.44

Table 6.2: The SMT system performance with best VW feature function.

Optimizer 2013 2014

MERT 33.50 42.85
PRO 33.68 40.34
Mira 29.19 34.13

�model-bg 31.06 43.88
-D 0.001 33.86 42.91

Table 6.3: Tuning with di�erent optimizers with dense features.

ability to predict the correct target phrases in the external evaluation were worse on that test

set. Improvements on the test set from 2014 are +0.23% and +0.13%.

Improvements cannot be con�rmed for the system using a web-scale language model. Adding

the discriminative classi�er decreases the F-score on both test sets (from -0.04% to -0.49%).

Further investigation showed that the largest weight has been assigned to the language model

during tuning, whereas the VW feature function recieved one of the lowest scores.

We see two issues with the presented method of classi�er integration into the SMT system in

the context of grammatical error correction. First, the classi�er is trained on the same training

data as the SMT system. This limits the discriminative power of the classi�er as it acquires

the same context information to discriminate between possible corrections as SMT already has.

Rozovskaya and Roth (2016) showed that a simple pipeline of classi�ers and an SMT system

can signi�cantly improve correction if the two frameworks are trained on di�erent data7.

The second issue is that for all classi�er predictions we use a single weight in the log-linear

model. If the classi�er is poor only in the correction of, for example, a speci�c group/type of

errors, the tuning algorithm will likely assign a lower weight for the feature function. This will

decrease the overall contribution of the classi�er, including the correction of errors for which the

classi�er possibly achieves a good accuracy. The latter issue is avoided when sparse features are

used.

6.3.2 Tuning sparse features

Tuning sparse features according to the M2 metric poses some problems. The MERT algorithm

(Och, 2003) included in Moses cannot handle e�ectively parameter tuning with sparse feature

7Although, the SMT system used in that experiment was not tuned according to the evaluation metric and it
is not clear if the same improvement would be achievable for the system tuned towards M2.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 78

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15.0

20.0

25.0

30.0

No. of iterations

M2

MERT

PRO

Mira

Mira -model-bg

Mira -model-bg -D 0.001

Figure 6.1: Results per iteration on development set (4-th NUCLE fold) for the system with
dense features.

weights and one of the other optimizers has to be used. MERT is able to handle only the order

of tens of features and is prone to over�tting.

We �rst experimented with both, PRO (Hopkins and May, 2011) and Batch Mira (Cherry

and Foster, 2012), for the dense features only. We found PRO and Batch Mira with standard

settings to either severely underperform in comparison to MERT or to su�er from instability

with regard to di�erent test sets (Table 6.3).

Experiments with Mira hyper-parameters allow to counter these e�ects. We �rst change

the background BLEU approximation method in Batch Mira to use model-best hypotheses

(�model-bg) which seems to produce more satisfactory results. Inspecting the tuning process,

however, reveals problems with this setting. Figure 6.1 documents how instable the tuning

process with Mira is across iterations. The best result is reached after only three iterations. In

a setting with sparse features this would result in only a small set of weighted sparse features.

Mira's behavior seems to stabilize across iterations, when we set the background corpus decay

rate to 0.001 (-D 0.001), resulting in a sentence-level approximation of M2. At this point it is

not quite clear why this is required. While PRO's behavior is more stable during tuning, results

on the test sets are subpar. It seems that no comparable hyper-parameter settings exist for

PRO.

6.3.3 Sparse feature sets

Figure 6.2 and Table 6.4 summarize the results for experiments with sparse features. All sparse

feature types are added on-top of our best dense-features systems. As before, we average sparse

feature weights across folds and multiple tuning runs.

All systems with sparse features outperform the system with dense features. On both test

sets we can see signi�cant improvements when including edit-based sparse features, and the

performance increases even more when source context is added. The CoNLL-2013 test set

contains annotations from only one annotator and is strongly biased towards high precision which

might explain the greater instability. It appears that sparse features with context, where surface

forms and word-classes are mixed, allow for the best �ne-tuning. The highest improvement for

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 79

B
as
el
in
e

B
es
t
de
ns
e

E0 E1

E0
+
E1

E1
C
11

E0
C
11

E0
C
11
+
E1

32.0

34.0

36.0

M2

(a) CoNLL-2013 test set

B
as
el
in
e

B
es
t
de
ns
e

E0 E1

E0
+
E1

E1
C
11

E0
C
11

E0
C
11
+
E1

42.0

44.0

46.0

M2

average M2

centroid M2

(b) CoNLL-2014 test set

Figure 6.2: Results for di�erent sparse features sets.

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

Best dense 45.07 16.53 33.50 50.94 26.21 42.85
E0 47.92 17.28 35.37 52.95 25.88 43.79
E1 46.08 17.51 34.74 51.76 27.17 43.83
E0+E1 48.43 17.34 35.64 54.35 26.12 44.69
E1C11 50.73 15.98 35.35 57.27 25.14 45.61
E0C11 51.10 16.79 36.27 57.28 25.53 45.87
E0C11+E1 51.55 16.35 36.04 58.61 24.89 46.12

Table 6.4: The SMT system performance with various sparse edit operations.

the CoNLL-2014 test set is reported for E0C11+E1, which increases precision by as much as

+7.67%.

Appendix B lists top-weighted sparse features for E0C11+E1.

6.3.4 Additional data

Table 6.5 summarizes the best results reported for dense and sparse features before and after

adding more training and/or language model data. While our sparse features cause a respectable

gain when used with the smaller language model (+2.54% and +3.10% on the CoNLL-2013 and

CoNLL-2014 test set respectively), the web-scale language model seems to cancel out part of the

e�ect (+1.04% and +0.56%). A similar situation occurs for the test set from 2014 when more

parallel training data is added instead. However, using a larger training data set on top of the

CCLM seems to allow for better use of correction patterns, and a substantial gain is visible for

the system using sparse features.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 80

CoNLL-2013 CoNLL-2014
System P R M2 P R M2

Best dense 45.07 16.53 33.50 50.94 26.21 42.85
+Lang-8 WEB 43.58 16.09 32.49 53.56 29.59 46.09
+CCLM 50.39 16.67 35.88 59.98 28.17 48.93
+Lang-8 WEB 48.73 17.13 35.60 61.74 30.51 51.25

Best sparse 51.55 16.35 36.04 57.99 25.11 45.95
+Lang-8 WEB 49.38 16.09 34.93 58.57 27.11 47.54
+CCLM 51.50 17.31 36.92 61.27 27.98 49.49
+Lang-8 WEB 52.47 17.83 37.78 63.52 30.49 52.21

Table 6.5: E�ects of adding a large-scale language model to SMT system.

6.4 Evaluation

In this section, we compare our best dense and sparse systems with other results published on

the CoNLL-2014 test set, and confront them with the upper-bound estimated by Bryant and Ng

(2015).

6.4.1 Comparison with other systems

In Table 6.6 we collect the published results for the CoNLL-2014 test set in comparison to

our results. Among the top-three positioned systems during the CoNLL-2014 shared task, two

submissions � CAMB Felice et al. (2014) and AMU Junczys-Dowmunt and Grundkiewicz (2014)

� were partially or fully based on statistical machine translation. The second system, CUUI

Rozovskaya et al. (2014a), was a classi�er-based approach. The AMU system was our own

contribution that introduced some of the concepts discussed in this thesis. Later analysis revealed

that our submission had an incorrectly �ltered language model that was missing a signi�cant

number of possible entries. Nonetheless, our SMT system with M2 tuning trained on Lang-8

NAIST data and using Wikipedia language model already beats the top CUUI system (41.63%

vs. 37.33%).

Our SMT system with additional task-speci�c features outperforms most of the more recent

results (the middle section of Table 6.6), including the GEC system combinations published after

the shared task by Susanto et al. (2014). Many of recent results also rely on MT systems with

new features (Chollampatt et al., 2016b) or n-best list re-ranking methods (Hoang et al., 2016,

Mizumoto and Matsumoto, 2016, Yuan et al., 2016). However, most of the improvement over

the CoNLL-2014 shared task of these works originates from using the parameter tuning tools

we introduced in Junczys-Dowmunt and Grundkiewicz (2014). Improvements are also reported

by systems relying on neural sequence-to-sequence models (Xie et al., 2016, Yuan and Briscoe,

2016).

Participants of the CoNLL-2014 shared task were allowed to use additional publicly available

data. Xie et al. (2016), who use a neural network-based approach to GEC, use data from the

Lang-8 corpus and combine their model with an n-gram language model trained on web-scale

Common Crawl data. The authors report a score of 40.56% M2. Adding a similar-size language

model (CCLM) to our system results in 48.93% M2.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 81

CoNLL-2014
System P R M2

The CoNLL-2014 shared task

AMU∗ (Junczys-Dowmunt and Grundkiewicz, 2014) 41.62 21.40 35.01
CUUI (Rozovskaya et al., 2014a) 41.78 24.88 36.79
CAMB (Felice et al., 2014) 39.71 30.10 37.33

Recently published results

Yuan et al. (2016) � � 38.08
Susanto et al. (2014) 53.55 19.14 39.39
Yuan and Briscoe (2016) � � 39.90
Mizumoto and Matsumoto (2016) 45.80 26.60 40.00
Xie et al. (2016) 49.24 23.77 40.56
Hoang et al. (2016) 50.56 22.68 40.58
Chollampatt et al. (2016b) 52.34 23.07 41.75
Rozovskaya and Roth (2016)∗ 60.17 25.64 47.40

This work

Baseline 48.97 26.03 41.63
+CCLM 58.91 25.05 46.37

Best dense 50.94 26.21 42.85
+CCLM 59.98 28.17 48.93
+Lang-8 WEB∗ 61.74 30.51 51.25

Best sparse 57.99 25.11 45.95
+CCLM 61.27 27.98 49.49
+Lang-8 WEB∗ 63.52 30.49 52.21

Table 6.6: Comparison of our SMT-based GEC systems with the published results.

As mentioned before, Rozovskaya and Roth (2016) trained their systems on Lang-8 WEB

data that has been collected by us. Since this data has not been made o�cially available, we

treat it as non-public and mark all systems in Table 6.6 that use it with a star. This makes

it di�cult to put their results in relation with previously published work, but we can at least

provide a comparison for our systems. As our strongest MT-only systems trained on public

data already outperform the pipelined approaches from Rozovskaya and Roth (2016) (49.49%

vs. 47.40%), it is unsurprising that adding more error-corrected parallel data results in an even

wider gap (52.21% vs 47.40%). We can assume that this gap would persist also in the case when

only public data were used.

It should be emphasized that bare-bones Moses trained on publicly available data rivals the

best reported systems on the CoNLL-2014 test set. The baseline system using the CoNLL-2013

test set as a development set (Figure 5.1b) already achieves an F-score of 40.66%, so the largest

improvement is achieved alone due to M2-based tuning. Better tuning sets, task-speci�c dense

and sparse features, and more data increase that performance advantage.

6.4.2 Upper-bound for the task

Bryant and Ng (2015) extended the CoNLL-2014 test set with additional annotations from

originally two to new ten annotators. We report results obtained for this resource in Table 6.7.

Chapter 6. Discriminative Models for SMT-based Grammatical Error Correction 82

GEC-10
System P R M2

AMU (Junczys-Dowmunt and Grundkiewicz, 2014) 58.53 31.68 50.05
CUUI (Rozovskaya et al., 2014a) 59.11 34.43 51.70
CAMB (Felice et al., 2014) 59.07 40.64 54.16

Baseline 69.22 37.00 58.95
+CCLM 76.66 36.39 62.77

Best dense 71.11 37.44 60.27
+CCLM 79.76 39.52 66.27
+Lang-8 WEB 80.50 42.29 68.18

Best sparse 76.48 35.99 62.43
+CCLM 80.57 39.74 66.83
+Lang-8 WEB 81.43 41.92 68.52

Avg. human annotator (Bryant and Ng, 2015) � � ≥72.58

Table 6.7: Evaluation of the SMT-based systems on the GEC-10 test set.

The higher M2 on the GEC-10 test set is due to the fact that systems generally achieve higher

recall (and precision) as it has been annotated by ten annotators. When several annotators are

used as the gold standard, the M2 scorer chooses whichever annotator for the given sentence

produces the highest F-score.

According to Bryant and Ng (2015), human annotators seem to reach on average 72.58% M2,

which can be seen as an upper-bound for the task. The authors re-assessed the CoNLL-2014

systems with this extended test set and estimated that the top 3 teams perform, on average,

between 67�73% as reliably as this human upper bound. The value has been calculated by

excluding one annotator from the set of 10 annotators and using annotations from remaining

9 annotators as references. Our best SMT system with sparse features is the closest one to

approach this upper-bound, reaching ca. 90.8% of it8.

6.5 Summary

This chapter examined two methods for incorporating discriminative components into the log-

linear model of the phrase-based statistical machine translation in order to improve the quality

of grammatical error correction. A number of binary-valued feature functions in the form of

sparse features based on correction patterns has shown to be more e�ective than a single feature

function based on a cost-sensitive multi-class discriminative classi�er. Our system with task-

speci�c sparse features achieved the new state-of-the-art for ESL grammatical error correction

at the CoNLL 2014 test set.

Scripts, system outputs, data sets, and trained models have been made publicly available for

better reproducibility9.

8The value is calculated as the division of the average system-vs-human and the average human-vs-human
performance (i.e. 72.58%).

9https://github.com/grammatical/baselines-emnlp2016

https://github.com/grammatical/baselines-emnlp2016

Chapter 7

Summary

In this dissertation we have presented research investigating the application of statistical machine

translation to the task of automated grammatical error correction. For this purpose, a number

of methods and algorithms have been described.

In Chapter 2 we de�ned the GEC task and presented historical and recent approaches to

the task. In Chapter 3 we described error corpora and monolingual data, and introduced a new

resource named the WikEd Error Corpus. In order to �nd the optimal automatic metric for the

task, we evaluated relevant metrics in terms of correlation with human judgment by conducting

the �rst published large-scale human evaluation of GEC systems in Chapter 4. Next, Chapter 5

presented our contribution to GEC using machine translation, introducing parameter tuning

towards a task-speci�c evaluation metric and task-speci�c dense features. In Chapter 6 we

enhanced the discriminative power of the SMT-based GEC systems with sparse features based

on correction patterns.

7.1 Contributions

Within the reported research we created the WikEd Error Corpus1 � a publicly available large

corpus of corrective Wikipedia edits of various types. Advantages of WikEd are its size (ca. 50

million of sentences) and permissive license.

We have successfully adapted methods from human evaluation campaigns from the Workshop

on Machine Translation to automatic grammatical error correction. We provided analysis of

correlation between the standard metrics in GEC and human judgment and showed that the

commonly used parameters for standard metrics in the shared task correlate strongly but still

may not be optimal. The collected and produced data has been made available2 and already

proved to be useful for other researchers, e.g. Napoles et al. (2016), Sakaguchi et al. (2016), Yuan

et al. (2016).

Despite the fact that statistical machine translation approaches are among the most popu-

lar methods in automatic grammatical error correction, few papers that report results for the

CoNLL-2014 test set seem to have exploited its full potential. In particular, the process of tuning

parameters towards the task evaluation metric has been under-explored so far.

We have shown that a pure SMT-based system actually outperforms the best reported results

for any paradigm in GEC provided that correct parameter tuning is performed. With this tuning

1https://github.com/snukky/wikiedits
2https://github.com/grammatical/evaluation

83

https://github.com/snukky/wikiedits
https://github.com/grammatical/evaluation

Chapter 7. Summary 84

mechanism available, task-speci�c features have been explored that bring further signi�cant

improvements, putting phrase-based SMT ahead of other approaches by a large margin. None

of the explored features require complicated pipelines or re-ranking mechanisms. Instead, they

form a natural part of the log-linear model in phrase-based SMT. It is therefore quite easy

to reproduce our results and the presented systems may serve as new baselines for automatic

grammatical error correction. Our systems and scripts have been made available for better

reproducibility3.

7.2 Future research

Research presented in this dissertation provides suggestions for future work on automated gram-

matical error correction. A deeper study on the following topics might be valuable for the �eld:

• Exploration of di�erent methods for adaptation of noisy edit data (e.g. the WikEd corpus,

the Lang-8 corpus) to grammatical error correction. A comparison of domain-adapted data

with arti�cially generated data would be valuable.

• Development of a better system-level evaluation metric and a meaningful sentence-level

metric. Recent studies shift from edit-based metrics towards �uency-based metrics (Napoles

et al., 2016, 2017).

• Quantitative analysis of corrections produced by the SMT-based system with regard to

the speci�c error types. The weakness of MT systems are spelling errors, which may be

addressed by encoding spell checker suggestions into a word lattice (Dyer et al., 2008), by

transliteration techniques (Durrani et al., 2014) or subword units (Sennrich et al., 2016).

• Application of neural machine translation, which recently outperforms many phrase-based

SMT models for traditional machine translation. Recently reported results using the neural

approach are still below the baselines introduced in this work.

• Examination on the e�ectiveness of the developed techniques apply to texts written by

native-speakers and to other languages, especially highly in�ected languages with free

word order.

3https://github.com/grammatical/baselines-emnlp2016

https://github.com/grammatical/baselines-emnlp2016

Appendix A

Error types in the NUCLE corpus

Type Description Example

Vt Verb tense
Medical technology during that time [is → was] not
advanced enough to cure him.

Vm Verb modal
Although the problem [would → may] not be serious,
people [would → might] still be afraid.

V0 Missing verb
However, there are also a great number of people [who
→ who are] against this technology.

Vform Verb form
A study in 2010 [shown → showed] that patients re-
cover faster when surrounded by family members.

SVA Subject-verb agreement
The bene�ts of disclosing genetic risk information [out-
weighs → outweigh] the costs.

ArtOrDet Article or determiner
It is obvious to see that [internet→ the internet] saves
people time and also connects people globally.

Nn Noun number
A carrier may consider not having any [child → chil-
dren] after getting married.

Npos Noun possessive
Someone should tell the [carriers → carrier's] relatives
about the genetic problem.

Pform Pronoun form
A couple should run a few tests to see if [their→ they]
have any genetic diseases beforehand.

Pref Pronoun reference
It is everyone's duty to ensure that [he or she → they]
undergo regular health checks.

Prep Preposition
This essay will [discuss about → discuss] whether a
carrier should tell his relatives or not.

Wci
Wrong collocation/id-
iom

Early examination is [healthy → advisable] and will
cast away unwanted doubts.

Wa Acronyms
After [WOWII → World War II], the population of
China decreased rapidly.

Wform Word form
The sense of [guilty → guilt] can be more than ex-
pected.

85

Appendix A. Error types in the NUCLE corpus 86

Type Description Example

Wtone Tone (formal/informal) [It's→ It is] our family and relatives that bring us up.

Srun
Run-on sentences,
comma splices

The issue is highly [debatable, a → debatable. A] ge-
netic risk could come from either side of the family.

Smod Dangling modi�ers
[Undeniable, → It is undeniable that] it becomes ad-
dictive when we spend more time socializing virtually.

Spar Parallelism
We must pay attention to this information and [assist-
ing → assist] those who are at risk.

Sfrag Sentence fragment However, from the ethical point of view.

Ssub Subordinate clause This is an issue [needs → that needs] to be addressed.

WOinc Incorrect word order
[Someone having what kind of disease→What kind of
disease someone has] is a matter of their own privacy.

WOadv
Incorrect adjective/ad-
verb order

In conclusion, [personally I→ I personally] feel that it
is important to tell one's family members.

Trans Linking words/phrases
It is sometimes hard to �nd [out→ out if] one has this
disease.

Mec
Spelling, punctuation,
capitalization, etc.

This knowledge [maybe relavant → may be relevant]
to them.

Rloc- Redundancy
It is up to the [patient's own choice → patient] to dis-
close information.

Cit Citation Poor citation practice.

Others Other errors
An error that does not �t into any other category but
can still be corrected.

Um Unclear meaning
Genetic disease has a close relationship with the born
gene. (i.e., no correction possible without further clar-
i�cation.)

Table A.1: Error types in the NUCLE corpus. Table adapted from Dahlmeier et al. 2013.

Appendix B

Sparse edit operation weights

Num. Correction pattern Weight

1 left(�<s>�)_ins(�the�) 0.154720
2 sub(�168�,�12�) 0.152366
3 ins(�the�)_right(�37�) 0.145961
4 sub(�124�,�12�) 0.144634
5 ins(�the�)_right(�160�) 0.135088
6 sub(�168�,�180�) 0.133227
7 left(�178�)_ins(�,�) 0.128886
8 sub(�had�,�have�) 0.104859
9 left(�<s>�)_sub(�Government�,�the government�) 0.103469
10 sub(�Government�,�the government�) 0.103273
11 sub(�G�,�161�) 0.098490
12 sub(�VHTR�,�vhtr�) 0.098490
13 ins(�97�) 0.097074
14 del(�the�) 0.096451
15 del(�the�)_right(�94�) 0.096307
16 del(�97�) 0.095509
17 del(�of�) 0.094942
18 left(�125�)_sub(�reactor�,�reactors�) 0.093740
19 left(�133�)_ins(�,�)_right(�12�) 0.090024
20 sub(�old-aged�,�aged�)_right(�2�) 0.090007
21 del(�on�) 0.087010
22 sub(�153�,�69�) 0.086614
23 sub(�has�,�have�) 0.083968
24 sub(�had�,�has�) 0.083948
25 ins(�168�) 0.083487
26 ins(�an�) 0.082840
27 left(�63�)_ins(�the�)_right(�160�) 0.081695
28 ins(�83�) 0.081025
29 sub(�is�,�was�) 0.077694
30 sub(�124�,�168�) 0.076637

Table B.1: Sparse edit operations with highest weights assigned by the MIRA algorithm.
Correction patterns generated with E0C11+E1 template.

87

Abbreviations

Acc Accuracy

BLEU BiLingual Evaluation Understudy

CSS Context-Sensitive Spelling

CLC Cambridge Learner Corpus

CoNLL Conference on Natural Language Learning

ESL English as a Second Language

ER Error Rate

Fβ Fβ-score

FCE First Certi�cate in English

FN False Negative

FP False Positive

GEC Grammatical Error Correction

HOO Helping Our Own

L1 the �rst language of the writer

L2 the second language of the writer

LM Language Model

M2 MaxMatch metric

METEOR Metric for Evaluation of Translation with Explicit ORdering

MERT Minimum Error Rate Training

ML Machine Learning

MT Machine Translation

NNJM Neural Network Joint Model

NMT Neural Machine Translation

NLP Natural Language Processing

NUCLE National University of Singapore Corpus of Learner English

SMT Statistical Machine Translation

OSM Operation Sequence Model

P Precision

POS Part Of Speech

PBSMT Phrase-Based Statistical Machine Translation

89

Abbreviations 90

R Recall

SER Sentence Error Rate

TN True Negative

TP True Positive

WC automatic Word Class

WAcc Weighted Accuracy

WAS Writer-Annotator-System

WER Word Error Rate

WMT Workshop on Machine Translation

VW Vowpal Wabbit

Symbols

General

p probability

p′ pseudo-probability

d distance function

1A indicator function of a set A

v̄ mean of a vector v

Evaluation

I number of sentences in a test set

N number of systems to be evaluated

M maximum number of sentences presented to the evaluator

Oi system ouput

E set of system outputs

Ui multiset of multiplicities

κ Cohen's κ coe�cient

ri system rank

ρ Spearman's rank correlation

r Pearson's correlation co-e�cient

Machine translation

S, T sequence of tokens

si, ti i-th token

T̂ suggested correction sequence

hi feature function

λi feature function weight

φ feature vector

91

List of Tables

2.1 The o�cial CoNLL-2014 shared task results. 21

3.1 Statistics of the NUCLE error corpora . 24

3.2 Sizes of the Lang-8 corpus reported in the literature. 26

3.3 The most frequent edits in the WikEd corpus. 29

4.1 WAS evaluation scheme. 33

4.2 Statistics for collected rankings. 42

4.3 Inter- and intra-annotator agreements. 43

4.4 Comparison of o�cial CoNLL-2014 ranking and human rankings. 45

4.5 Accuracy for ranking-based prediction of pairwise judgments. 45

4.6 Rankings by individual annotators. 47

4.7 Head-to-head comparison for human Expected Wins. 48

4.8 Correlation results for various metrics and human ranking. 49

4.9 Inter-annotator correlation between rankings computed for individual judges. . . 50

5.1 Word-based Levenshtein distances and separated edit operations. 55

5.2 Clusters of automatic word-classes. 57

5.3 Example of the operation sequence for OSM. 58

5.4 Statistics of parallel training data. 59

5.5 Statistics of monolingual training data. 59

5.6 Comparison of error rates in parallel corpora. 60

5.7 The SMT system performance with various dense feature functions. 64

5.8 E�ects of adding a large-scale language model to SMT system. 65

5.9 E�ects of adding more parallel training data to SMT system. 66

5.10 Results for the phrase table �ll-up with out-of-domain data. 67

6.1 The classi�er performance on CoNLL-2013 with di�erent feature sets. 76

6.2 The SMT system performance with best VW feature function. 77

6.3 Tuning with di�erent optimizers with dense features. 77

6.4 The SMT system performance with various sparse edit operations. 79

6.5 E�ects of adding a large-scale language model to SMT system. 80

6.6 Comparison of our SMT-based GEC systems with the published results. 81

6.7 Evaluation of the SMT-based systems on the GEC-10 test set. 82

A.1 Error types in the NUCLE corpus. 86

B.1 Sparse edit operations with highest weights assigned by the MIRA algorithm. . . 87

93

List of Figures

2.1 Automatic error correction process. 7

2.2 Classi�cation of text correction approaches. 10

2.3 Example of a Language Tool error-matching rule. 11

2.4 Example of classi�cation approach for preposition correction. 14

4.1 Frequencies of distinct corrected outputs for systems participating in the CoNLL-
2014 shared task. 37

4.2 Screenshot of Appraise modi�ed for GEC judgment. 40

4.3 Two authentic example rankings with overlapping system outputs. 41

4.4 Spearman's ρ and Pearson's r correlation of M2 with human judgment w.r.t. β. . 50

5.1 Results for di�erent optimization settings and feature sets. 61

6.1 Results per iteration on development set . 78

6.2 Results for di�erent sparse features sets. 79

95

Bibliography

Andersen, Ø. E., Yannakoudakis, H., Barker, F., and Parish, T. (2013). Developing and testing

a self-assessment and tutoring system. In Proceedings of the Eighth Workshop on Innovative

Use of NLP for Building Educational Applications, pages 32�41, Atlanta, Georgia. Association

for Computational Linguistics.

Atwell, E. S. (1987). How to detect grammatical errors in a text without parsing it. In Pro-

ceedings of the Third Conference on European Chapter of the Association for Computational

Linguistics, EACL '87, pages 38�45, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Atwell, E. S. and Elliot, S. (1987). Dealing with ill-formed english text. The Computational

Analysis of English: A Corpus-Based Approach, pages 120�138.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473.

Bassil, Y. and Alwani, M. (2012). Post-editing error correction algorithm for speech recognition

using bing spelling suggestion. arXiv preprint arXiv:1203.5255.

Bender, E. M., Flickinger, D., Oepen, S., Walsh, A., and Baldwin, T. (2004). Arboretum: Using

a precision grammar for grammar checking in call. In In Proceedings of the InSTIL/ICALL

Symposium: NLP and Speech Technologies in Advanced Language Learning Systems, pages

83�86.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language

model. J. Mach. Learn. Res., 3:1137�1155.

Bisazza, A., Ruiz, N., and Federico, M. (2011). Fill-up versus interpolation methods for phrase-

based SMT adaptation. In International Workshop on Spoken Language Translation (IWSLT)

2011.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bojar, O., Buck, C., Callison-Burch, C., Federmann, C., Haddow, B., Koehn, P., Monz, C., Post,

M., Soricut, R., and Specia, L. (2013). Findings of the 2013 Workshop on Statistical Machine

Translation. In Proc. of the Eighth Workshop on Statistical Machine Translation, pages 1�44.

ACL.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina,

P., Post, M., Saint-Amand, H., et al. (2014). Findings of the 2014 Workshop on Statistical

97

Bibliography 98

Machine Translation. In Proc. of the Ninth Workshop on Statistical Machine Translation,

pages 12�58. ACL.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes,

A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel, M., Post,

M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., and Zampieri, M. (2016).

Findings of the 2016 conference on machine translation. In Proceedings of the First Conference

on Machine Translation, pages 131�198, Berlin, Germany. Association for Computational

Linguistics.

Bojar, O., Ercegov£evi¢, M., Popel, M., and Zaidan, O. (2011). A grain of salt for the WMT

manual evaluation. In Proc. of the Sixth Workshop on Statistical Machine Translation, pages

1�11, Edinburgh, Scotland. ACL.

Boro³, T., Dumitrescu, S. D., Za�u, A., Barbu Mititelu, V., and Vaduva, I. P. (2014). Racai gec

� a hybrid approach to grammatical error correction. In Proceedings of the Eighteenth Con-

ference on Computational Natural Language Learning: Shared Task, pages 43�48, Baltimore,

Maryland. Association for Computational Linguistics.

Bouchard, G. and Triggs, B. (2004). The tradeo� between generative and discriminative classi-

�ers. In 16th IASC International Symposium on Computational Statistics (COMPSTAT'04),

pages 721�728.

Brants, T. and Franz, A. (2006). Web 1t 5-gram version 1.

Brockett, C., Dolan, W. B., and Gamon, M. (2006). Correcting ESL errors using phrasal SMT

techniques. In Proceedings of the 21st International Conference on Computational Linguistics

and the 44th Annual Meeting of the Association for Computational Linguistics, pages 249�256,

Stroudsburg, USA. Association for Computational Linguistics.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based

n-gram models of natural language. Comput. Linguist., 18(4):467�479.

Bryant, C. and Ng, H. T. (2015). How far are we from fully automatic high quality grammatical

error correction? In Proceedings of the 53rd Annual Meeting of the Association for Computa-

tional Linguistics and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 697�707, Beijing, China. Association for Computational Lin-

guistics.

Buck, C., Hea�eld, K., and van Ooyen, B. (2014). N-gram counts and language models from the

Common Crawl. In Proceedings of the Language Resources and Evaluation Conference, pages

3579�3584, Reykjavík, Iceland.

Buys, J. and van der Merwe, B. (2013). A tree transducer model for grammatical error correction.

In Proceedings of the Seventeenth Conference on Computational Natural Language Learning:

Shared Task, pages 43�51, So�a, Bulgaria. Association for Computational Linguistics.

Cahill, A., Madnani, N., Tetreault, J., and Napolitano, D. (2013). Robust systems for preposi-

tion error correction using wikipedia revisions. In Proceedings of the 2013 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 507�517, Atlanta, Georgia. Association for Computational Linguistics.

Bibliography 99

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., and Schroeder, J. (2008). Further meta-

evaluation of machine translation. In Proc. of the Third Workshop on Statistical Machine

Translation, pages 70�106. ACL.

Cettolo, M., Bertoldi, N., and Federico, M. (2011). Methods for smoothing the optimizer in-

stability in SMT. In MT Summit XIII: the Thirteenth Machine Translation Summit, pages

32�39.

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques for lan-

guage modeling. In Proceedings of the 34th Annual Meeting on Association for Computational

Linguistics, ACL '96, pages 310�318, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Cherry, C. and Foster, G. (2012). Batch tuning strategies for statistical machine translation.

In Proceedings of the 2012 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 427�436, Stroudsburg,

USA. Association for Computational Linguistics.

Chiang, D., Knight, K., and Wang, W. (2009). 11,001 new features for statistical machine

translation. In Proceedings of human language technologies: The 2009 annual conference of

the north american chapter of the association for computational linguistics, pages 218�226.

Association for Computational Linguistics.

Chodorow, M., Dickinson, M., Israel, R., and Tetreault, J. R. (2012). Problems in evaluating

grammatical error detection systems. In Proceedings of COLING 2012, pages 611�628.

Chodorow, M. and Leacock, C. (2000). An unsupervised method for detecting grammatical

errors. In Proceedings of the 1st North American Chapter of the Association for Computational

Linguistics Conference, NAACL 2000, pages 140�147, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Chodorow, M., Tetreault, J. R., and Han, N.-R. (2007). Detection of grammatical errors involving

prepositions. In Proceedings of the fourth ACL-SIGSEM workshop on prepositions, pages 25�

30. Association for Computational Linguistics.

Chollampatt, S., Hoang, D. T., and Ng, H. T. (2016a). Adapting grammatical error correction

based on the native language of writers with neural network joint models. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1901�1911,

Austin, Texas. Association for Computational Linguistics.

Chollampatt, S., Taghipour, K., and Ng, H. T. (2016b). Neural network translation models for

grammatical error correction. arXiv preprint arXiv:1606.00189.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for statistical

machine translation: Controlling for optimizer instability. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies,

HLT '11, pages 176�181, Stroudsburg, USA. Association for Computational Linguistics.

Cohen, J. (1960a). A coe�cient of agreement for nominal scales. Educational and Psychological

Measurement.

Bibliography 100

Cohen, J. (1960b). A coe�cient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1):37.

Crysmann, B., Bertomeu, N., Adolphs, P., Flickinger, D., and Klüwer, T. (2008). Hybrid pro-

cessing for grammar and style checking. In Proceedings of the 22nd International Conference

on Computational Linguistics-Volume 1, pages 153�160. Association for Computational Lin-

guistics.

Dahlmeier, D. and Ng, H. T. (2011). Grammatical error correction with alternating structure

optimization. In Proceedings of the 49th Annual Meeting of the Association for Computa-

tional Linguistics: Human Language Technologies-Volume 1, pages 915�923. Association for

Computational Linguistics.

Dahlmeier, D. and Ng, H. T. (2012a). A beam-search decoder for grammatical error correction.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning, EMNLP-CoNLL '12, pages 568�578.

Association for Computational Linguistics.

Dahlmeier, D. and Ng, H. T. (2012b). Better evaluation for grammatical error correction. In

Proceedings of the 2012 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 568�572. Association for

Computational Linguistics.

Dahlmeier, D., Ng, H. T., and Ng, E. J. F. (2012). Nus at the hoo 2012 shared task. In

Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, pages

216�224. Association for Computational Linguistics.

Dahlmeier, D., Ng, H. T., and Wu, S. M. (2013). Building a large annotated corpus of learner en-

glish: The NUS corpus of learner english. In Proceedings of the Eighth Workshop on Innovative

Use of NLP for Building Educational Applications, pages 22�31.

Dale, R., Anisimo�, I., and Narroway, G. (2012). Hoo 2012: A report on the preposition and

determiner error correction shared task. In Proceedings of the Seventh Workshop on Building

Educational Applications Using NLP, pages 54�62. Association for Computational Linguistics.

Dale, R. and Kilgarri�, A. (2010). Helping our own: Text massaging for computational linguistics

as a new shared task. In Proceedings of the 6th International Natural Language Generation

Conference, INLG '10, pages 263�267, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Dale, R. and Kilgarri�, A. (2011). Helping our own: The HOO 2011 pilot shared task. In

Proceedings of the 13th European Workshop on Natural Language Generation, pages 242�249.

Association for Computational Linguistics.

Daudaravicius, V. (2015). Automated evaluation of scienti�c writing: Aesw shared task proposal.

In Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational

Applications, pages 56�63.

De Felice, R. and Pulman, S. (2007). Automatically acquiring models of preposition use. In

Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, pages 45�50, Prague,

Czech Republic. Association for Computational Linguistics.

Bibliography 101

De Felice, R. and Pulman, S. G. (2008). A classi�er-based approach to preposition and deter-

miner error correction in l2 english. In Proceedings of the 22Nd International Conference on

Computational Linguistics - Volume 1, COLING '08, pages 169�176, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Automatic Metric for Reliable Optimization

and Evaluation of Machine Translation Systems. In Proc. of the EMNLP 2011 Workshop on

Statistical Machine Translation.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast and robust

neural network joint models for statistical machine translation. In Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 1370�1380, Baltimore, Maryland. Association for Computational Linguistics.

Dini, L. and Malnati, G. (1993). Weak constraints and preference rules. Studies in Machine

Translation and Natural Language Processing, pages 75�90.

Douglas, S. and Dale, R. (1992). Towards robust PATR. In Proceedings of the 14th conference

on Computational linguistics � Volume 2, pages 468�474.

Durrani, N., Fraser, A., Schmid, H., Hoang, H., and Koehn, P. (2013). Can Markov Models

Over Minimal Translation Units Help Phrase-Based SMT? In ACL (2), pages 399�405. The

Association for Computer Linguistics.

Durrani, N., Sajjad, H., Hoang, H., and Koehn, P. (2014). Integrating an unsupervised translit-

eration model into statistical machine translation. In Proceedings of the 14th Conference of the

European Chapter of the Association for Computational Linguistics, volume 2: Short Papers,

pages 148�153, Gothenburg, Sweden. Association for Computational Linguistics.

Durrani, N., Sajjad, H., Sha�q Joty, A. A., and Vogel, S. (2015). Using joint models for domain

adaptation in statistical machine translation. Proceedings of MT Summit XV, page 117.

Durrani, N., Schmid, H., and Fraser, A. (2011). A joint sequence translation model with inte-

grated reordering. In Proceedings of the 49th Annual Meeting of the Association for Compu-

tational Linguistics: Human Language Technologies - Volume 1, HLT '11, pages 1045�1054,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Dyer, C., Muresan, S., and Resnik, P. (2008). Generalizing word lattice translation. In Proceed-

ings of ACL-08: HLT, pages 1012�1020. Association for Computational Linguistics.

Ehsan, N. and Faili, H. (2013). Grammatical and context-sensitive error correction using a

statistical machine translation framework. Software: Practice and Experience, 43(2):187�206.

Elghafari, A., Meurers, D., and Wunsch, H. (2010). Exploring the data-driven prediction of

prepositions in english. In Proceedings of the 23rd International Conference on Computational

Linguistics: Posters, pages 267�275. Association for Computational Linguistics.

Ellis, R. (1994). The study of second language acquisition. Oxford University.

Federmann, C. (2010). Appraise: An open-source toolkit for manual phrase-based evaluation

of translations. In Proc. of the Seventh International Conference on Language Resources and

Evaluation (LREC'10). ELRA.

Bibliography 102

Felice, M. and Briscoe, T. (2015). Towards a standard evaluation method for grammatical

error detection and correction. In Proceedings of the 2015 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 578�587, Denver, Colorado. Association for Computational Linguistics.

Felice, M. and Yuan, Z. (2014). Generating arti�cial errors for grammatical error correction. In

Proceedings of the Student Research Workshop at the 14th Conference of the European Chap-

ter of the Association for Computational Linguistics, pages 116�126, Gothenburg, Sweden.

Association for Computational Linguistics.

Felice, M., Yuan, Z., Andersen, Ø. E., Yannakoudakis, H., and Kochmar, E. (2014). Grammatical

error correction using hybrid systems and type �ltering. In Proceedings of the Eighteenth Con-

ference on Computational Natural Language Learning: Shared Task, pages 15�24, Baltimore,

Maryland. Association for Computational Linguistics.

Fossati, D. and Di Eugenio, B. (2007). A mixed trigrams approach for context sensitive

spell checking. In Computational Linguistics and Intelligent Text Processing, pages 623�633.

Springer.

Foster, J. and Andersen, Ø. E. (2009). Generrate: generating errors for use in grammatical

error detection. In Proceedings of the fourth workshop on innovative use of nlp for building

educational applications, pages 82�90. Association for Computational Linguistics.

Fraser, I. S. and Hodson, L. M. (1978). Twenty-one kicks at the grammar horse: Close-up:

Grammar and composition. English journal, 67(9):49�54.

Gamon, M. (2010). Using mostly native data to correct errors in learners' writing: A meta-

classi�er approach. In Proceedings of NAACL 2010. Association for Computational Linguistics.

Gamon, M., Gao, J., Brockett, C., Klementiev, A., Dolan, W. B., Belenko, D., and Vanderwende,

L. (2008). Using contextual speller techniques and language modeling for esl error correction.

In IJCNLP, volume 8.

Gamon, M. and Leacock, C. (2010). Search right and thou shalt �nd...: using web queries

for learner error detection. In Proceedings of the NAACL HLT 2010 Fifth Workshop on In-

novative Use of NLP for Building Educational Applications, pages 37�44. Association for

Computational Linguistics.

Gamon, M., Leacock, C., Brockett, C., Dolan, W. B., Gao, J., Belenko, D., and Klementiev, A.

(2009). Using statistical techniques and web search to correct esl errors. Calico Journal, Vol

26, No. 3.

Gao, Q. and Vogel, S. (2008). Parallel implementations of word alignment tool. In Software

Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 49�57.

ACL.

Golding, A. R. (1995). A bayesian hybrid method for context-sensitive spelling correction. In

In Proceedings of the Third Workshop on Very Large Corpora.

Golding, A. R. and Roth, D. (1996). Applying winnow to context-sensitive spelling correction. In

Machine Learning, Proceedings of the Thirteenth International Conference (ICML '96), pages

182�190.

Bibliography 103

Golding, A. R. and Roth, D. (1999). A winnow-based approach to context-sensitive spelling

correction. Machine Learning, 34(1-3):107�130.

Golding, A. R. and Schabes, Y. (1996). Combining trigram-based and feature-based meth-

ods for context-sensitive spelling correction. In 34th Annual Meeting of the Association for

Computational Linguistics, pages 71�78.

Grundkiewicz, R. (2013a). Automatic extraction of Polish language errors from text edition

history. In Text, Speech, and Dialogue � 16th International Conference, TSD 2013, volume

8082 of Lecture Notes in Computer Science, pages 129�136, Plzen, Czech. Springer Berlin

Heidelberg.

Grundkiewicz, R. (2013b). Errano: a tool for semi-automatic annotation of language errors. In

Proceedings of the 6th Language & Technology Conference, pages 309�313, Poznan, Poland.

Grundkiewicz, R. and Junczys-Dowmunt, M. (2014). The WikEd error corpus: A corpus of cor-

rective wikipedia edits and its application to grammatical error correction. In Przepiórkowski,

A. and Ogrodniczuk, M., editors, Advances in Natural Language Processing � Lecture Notes

in Computer Science, volume 8686, pages 478�490. Springer.

Grundkiewicz, R. and Junczys-Dowmunt, M. (2015). Grammatical error correction with (almost)

no linguistic knowledge. In Proceedings of the 7th Language & Technology Conference, pages

240�245, Poznan, Poland.

Grundkiewicz, R. and Junczys-Dowmunt, M. (2017). Reinvestigating the classi�ation approach

to the article and preposition error correction. Lecture Notes in Arti�cial Intelligence, Springer

Verlag, Human Language Technologies as a Challenge for Computer Science and Linguistics.

To appear in the LTC 2015 post-conference volume.

Grundkiewicz, R., Junczys-Dowmunt, M., and Gillian, E. (2015). Human evaluation of gram-

matical error correction systems. In Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, pages 461�470, Lisbon, Portugal. Association for Computa-

tional Linguistics.

Habash, N. (2008). Four techniques for online handling of out-of-vocabulary words in arabic-

english statistical machine translation. In Proceedings of the 46th Annual Meeting of the

Association for Computational Linguistics on Human Language Technologies: Short Papers,

pages 57�60. Association for Computational Linguistics.

Han, N.-R., Chodorow, M., and Leacock, C. (2006). Detecting errors in english article usage by

non-native speakers. Natural Language Engineering, 12(2):115�129.

Hasler, E., Haddow, B., and Koehn, P. (2012). Sparse lexicalised features and topic adaptation

for smt. In International Workshop on Spoken Language Translation (IWSLT) 2012.

Hdez, S. D. and Calvo, H. (2014). Conll 2014 shared task: Grammatical error correction with a

syntactic n-gram language model from a big corpora. In Proceedings of the Eighteenth Con-

ference on Computational Natural Language Learning: Shared Task, pages 53�59, Baltimore,

Maryland. Association for Computational Linguistics.

Bibliography 104

Hea�eld, K. and Lavie, A. (2010). Combining machine translation output with open source:

The Carnegie Mellon multi-engine machine translation scheme. The Prague Bulletin of Math-

ematical Linguistics, 93:27�36.

Hea�eld, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable modi�ed Kneser-Ney

language model estimation. In Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics, pages 690�696, So�a, Bulgaria.

Heidorn, G. E. (2000). Intelligent Writing Assistance. In Dale, R., Moisl, H., and Somers, H.,

editors, Handbook of Natural Language Processing, pages 181�207. Dekker, New York, NY,

USA.

Heidorn, G. E., Jensen, K., Miller, L. A., Byrd, R. J., and Chodorow, M. (1982). The epistle

text-critiquing system. IBM Systems Journal, 21:305�326.

Herbrich, R., Minka, T., and Graepel, T. (2007). Trueskill(tm): A bayesian skill rating system.

In Advances in Neural Information Processing Systems 20, pages 569�576. MIT Press.

Hermet, M., Désilets, A., and Szpakowicz, S. (2008). Using the web as a linguistic resource to

automatically correct lexico-syntactic errors. In Proceedings of the Sixth International Con-

ference on Language Resources and Evaluation (LREC'08), Marrakech, Morocco. European

Language Resources Association (ELRA).

Hinkle, D. E., Wiersma, W., and Jurs, S. G. (2003). Applied statistics for the behavioral sciences.

Hirst, G. and Budanitsky, A. (2005). Correcting real-word spelling errors by restoring lexical

cohesion. Natural Language Engineering, 11(1):87.

Hoang, D. T., Chollampatt, S., and Ng, H. T. (2016). Exploiting n-best hypotheses to improve

an smt approach to grammatical error correction. arXiv preprint arXiv:1606.00210.

Holan, T., Kubon, V., and Platek, M. (1997). A prototype of a grammar checker for czech. In

ANLP, pages 147�154.

Hopkins, M. and May, J. (2011). Tuning as ranking. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing, EMNLP '11, pages 1352�1362, Stroudsburg,

USA. Association for Computational Linguistics.

Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., and Isahara, H. (2003). Automatic error

detection in the japanese learners' english spoken data. In Proceedings of the 41st Annual

Meeting on Association for Computational Linguistics-Volume 2, pages 145�148. Association

for Computational Linguistics.

Jia, Z., Wang, P., and Zhao, H. (2013). Grammatical error correction as multiclass classi�cation

with single model. In Proceedings of the Seventeenth Conference on Computational Natural

Language Learning: Shared Task, pages 74�81, So�a, Bulgaria. Association for Computational

Linguistics.

Junczys-Dowmunt, M. (2012). A phrase table without phrases: Rank encoding for better phrase

table compression. In 16th Annual Conference of the European Association for Machine Trans-

lation (EAMT), pages 245�252, Trento, Italy.

Bibliography 105

Junczys-Dowmunt, M. and Grundkiewicz, R. (2014). The AMU system in the CoNLL-2014

shared task: Grammatical error correction by data-intensive and feature-rich statistical ma-

chine translation. In Proceedings of the Eighteenth Conference on Computational Natural

Language Learning: Shared Task, pages 25�33, Baltimore, Maryland. Association for Compu-

tational Linguistics.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2016). Phrase-based machine translation is state-

of-the-art for automatic grammatical error correction. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, pages 1546�1556, Austin, Texas. As-

sociation for Computational Linguistics.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY,

USA, 1st edition.

Koehn, P. (2012). Simulating human judgment in machine translation evaluation campaigns. In

International Workshop on Spoken Language Translation, pages 179�184.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen,

W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses:

Open source toolkit for statistical machine translation. In Annual Meeting of the Association

for Computational Linguistics. The Association for Computer Linguistics.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings

of the 2003 Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology-Volume 1, pages 48�54. Association for Compu-

tational Linguistics.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Comput. Surv.,

pages 377�439.

Leacock, C., Chodorow, M., Gamon, M., and Tetreault, J. (2010). Automated grammatical error

detection for language learners. Synthesis lectures on human language technologies, 3(1):1�134.

Lee, J. (2004). Automatic article restoration. In Proceedings of the Student Research Workshop

at HLT-NAACL 2004, HLT-SRWS '04, pages 31�36, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Lee, J. and Sene�, S. (2008). Correcting misuse of verb forms. In Proceedings of ACL-08: HLT,

pages 174�182, Columbus, Ohio. Association for Computational Linguistics.

Lee, K. and Lee, G. G. (2014). Postech grammatical error correction system in the conll-2014

shared task. In Proceedings of the Eighteenth Conference on Computational Natural Language

Learning: Shared Task, pages 65�73, Baltimore, Maryland. Association for Computational

Linguistics.

Lee, L.-H., Yu, L.-C., Chang, L.-P., et al. (2015). Overview of the nlp-tea 2015 shared task for

chinese grammatical error diagnosis. In Proceedings of the 2nd Workshop on Natural Language

Processing Techniques for Educational Applications, pages 1�6.

Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Rever-

sals. Soviet Physics Doklady, 10.

Bibliography 106

Lewis, M. P., Simons, G. F., and Fennig, C. D. (2015). Ethnologue: Languages of the world,

volume 18.

Liu, V. and Curran, J. R. (2006). Web text corpus for natural language processing. In Euro-

pean Chapter of the Association for Computational Linguistics. The Association for Computer

Linguistics.

MacDonald, N. H., Frase, L. T., Gingrich, P. S., and Keenan, S. A. (1982). The Writer's

Workbench: Computer aids for text analysis. IEEE Trans. Communications, COM-30(1):105�

110.

Machá£ek, M. and Bojar, O. (2013). Results of the WMT13 metrics shared task. In Proc. of

the Eighth Workshop on Statistical Machine Translation, pages 45�51. ACL.

Machá£ek, M. and Bojar, O. (2014a). Results of the WMT14 metrics shared task. In Proc. of

the Ninth Workshop on Statistical Machine Translation, pages 293�301. ACL.

Machá£ek, M. and Bojar, O. (2014b). Results of the WMT14 metrics shared task. In Proc. of

the Ninth Workshop on Statistical Machine Translation, pages 293�301. ACL.

Madnani, N., Tetreault, J., Chodorow, M., and Rozovskaya, A. (2011). They can help: using

crowdsourcing to improve the evaluation of grammatical error detection systems. In Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies: short papers-Volume 2, pages 508�513. Association for Computational

Linguistics.

Maier, D. (1978). The Complexity of Some Problems on Subsequences and Supersequences. J.

ACM, 25(2):322�336.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.

Cambridge University Press, New York, NY, USA.

Markov, A. A. (1960). The theory of algorithms. Am. Math. Soc. Transl., 15:1�14.

Max, A. and Wisniewski, G. (2010). Mining Naturally-occurring Corrections and Paraphrases

from Wikipedia's Revision History. In Proceedings of LREC.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). E�cient estimation of word represen-

tations in vector space. arXiv preprint arXiv:1301.3781.

Miªkowski, M. (2008). Automated Building of Error Corpora of Polish. In Corpus Linguistics,

Computer Tools, and Applications � State of the Art, pages 631�639. Peter Lang.

Miªkowski, M. (2009). Automating rule generation for grammar checkers. In Explorations across

Languages and Corpora, PALC 2009, pages 123�133.

Miªkowski, M. (2010). Developing an open-source, rule-based proofreading tool. Software: Prac-

tice and Experience, 40(7):543�566.

Mizumoto, T., Hayashibe, Y., Komachi, M., Nagata, M., and Matsumoto, Y. (2012). The e�ect

of learner corpus size in grammatical error correction of ESL writings. In Proceedings of

COLING 2012, pages 863�872.

Bibliography 107

Mizumoto, T., Komachi, M., Nagata, M., and Matsumoto, Y. (2011). Mining revision log of

language learning SNS for automated japanese error correction of second language learners.

In The 5th International Joint Conference on Natural Language Processing, pages 147�155.

Mizumoto, T. and Matsumoto, Y. (2016). Discriminative reranking for grammatical error cor-

rection with statistical machine translation. In Proceedings of NAACL-HLT, pages 1133�1138.

Mohit, B., Rozovskaya, A., Habash, N., Zaghouani, W., and Obeid, O. (2014a). The �rst

qalb shared task on automatic text correction for arabic. In Proceedings of the EMNLP

2014 Workshop on Arabic Natural Language Processing (ANLP), pages 39�47, Doha, Qatar.

Association for Computational Linguistics.

Mohit, B., Rozovskaya, A., Habash, N., Zaghouani, W., and Obeid, O. (2014b). The �rst

qalb shared task on automatic text correction for arabic. In Proceedings of the EMNLP

2014 Workshop on Arabic Natural Language Processing (ANLP), pages 39�47, Doha, Qatar.

Association for Computational Linguistics.

Moore, R. C. and Lewis, W. (2010). Intelligent selection of language model training data.

In Proceedings of the ACL 2010 Conference Short Papers, ACLShort '10, pages 220�224,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Mozgovoy, M. (2011). Dependency-based rules for grammar checking with languagetool. In

Ganzha, M., Maciaszek, L. A., and Paprzycki, M., editors, FedCSIS, pages 209�212.

Naber, D. (2003). A rule-based style and grammar checker. PhD thesis, Bielefeld University

Bielefeld, Germany.

Napoles, C., Sakaguchi, K., and Tetreault, J. (2016). There's no comparison: Reference-less

evaluation metrics in grammatical error correction. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pages 2109�2115, Austin, Texas. Associ-

ation for Computational Linguistics.

Napoles, C., Sakaguchi, K., and Tetreault, J. (2017). JFLEG: A �uency corpus and benchmark

for grammatical error correction. In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages

229�234, Valencia, Spain. Association for Computational Linguistics.

Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classi�ers: A comparison

of logistic regression and naive bayes. In Advances in neural information processing systems,

pages 841�848.

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., and Bryant, C. (2014). The

conll-2014 shared task on grammatical error correction. In Proceedings of the Eighteenth Con-

ference on Computational Natural Language Learning: Shared Task, pages 1�14, Baltimore,

Maryland. Association for Computational Linguistics.

Ng, H. T., Wu, S. M., Wu, Y., Hadiwinoto, C., and Tetreault, J. (2013). The conll-2013 shared

task on grammatical error correction. In Proceedings of the Seventeenth Conference on Com-

putational Natural Language Learning: Shared Task, pages 1�12, So�a, Bulgaria. Association

for Computational Linguistics.

Bibliography 108

Nicholls, D. (2003). The cambridge learner corpus: Error coding and analysis for lexicography

and elt. In Proceedings of the Corpus Linguistics 2003 conference, volume 16, pages 572�581.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings

of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1, ACL

'03, pages 160�167, Stroudsburg, USA. Association for Computational Linguistics.

Och, F. J. and Ney, H. (2002). Discriminative training and maximum entropy models for sta-

tistical machine translation. In Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, pages 295�302. Association for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for automatic

evaluation of machine translation. In Proc. of the 40th Annual Meeting on ACL, pages 311�

318. ACL.

Park, J. C., Palmer, M. S., and Washburn, C. (1997). An english grammar checker as a writing

aid for students of english as a second language. In ANLP, page 24.

Parker, R., Gra�, D., Kong, J., Chen, K., and Maeda, K. (2011). English gigaword �fth edition,

linguistic data consortium. Technical report, Technical Report. Linguistic Data Consortium,

Philadelphia.

Perez-Cortes, J. C., Amengual, J.-C., Arlandis, J., and Llobet, R. (2000). Stochastic error-

correcting parsing for ocr post-processing. In Pattern Recognition, 2000. Proceedings. 15th

International Conference on, volume 4, pages 405�408. IEEE.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-Heinemann, Newton, MA,

USA, 2nd edition.

Roth, D. (1998). Learning to resolve natural language ambiguities: A uni�ed approach. In

Proceedings of the Fifteenth National/Tenth Conference on Arti�cial Intelligence/Innovative

Applications of Arti�cial Intelligence, AAAI '98/IAAI '98, pages 806�813, Menlo Park, CA,

USA. American Association for Arti�cial Intelligence.

Rozovskaya, A., Bouamor, H., Habash, N., Zaghouani, W., Obeid, O., and Mohit, B. (2015). The

second qalb shared task on automatic text correction for arabic. In Proceedings of the Second

Workshop on Arabic Natural Language Processing, pages 26�35, Beijing, China. Association

for Computational Linguistics.

Rozovskaya, A., Chang, K.-W., Sammons, M., and Roth, D. (2013). The university of illinois

system in the conll-2013 shared task. In Proceedings of the Seventeenth Conference on Com-

putational Natural Language Learning: Shared Task, pages 13�19, So�a, Bulgaria. Association

for Computational Linguistics.

Rozovskaya, A., Chang, K.-W., Sammons, M., Roth, D., and Habash, N. (2014a). The illinois-

columbia system in the conll-2014 shared task. In Proceedings of the Eighteenth Conference on

Computational Natural Language Learning: Shared Task, pages 34�42, Baltimore, Maryland.

Association for Computational Linguistics.

Rozovskaya, A. and Roth, D. (2010a). Annotating ESL errors: Challenges and rewards.

Bibliography 109

Rozovskaya, A. and Roth, D. (2010b). Generating confusion sets for context-sensitive error cor-

rection. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing, EMNLP '10, pages 961�970, Stroudsburg, PA, USA. Association for Computa-

tional Linguistics.

Rozovskaya, A. and Roth, D. (2010c). Training paradigms for correcting errors in grammar and

usage. In North American Chapter of the Association for Computational Linguistics.

Rozovskaya, A. and Roth, D. (2014). Building a state-of-the-art grammatical error correction

system.

Rozovskaya, A. and Roth, D. (2016). Grammatical error correction: Machine translation and

classi�ers. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 2205�2215, Berlin, Germany. Association for

Computational Linguistics.

Rozovskaya, A., Roth, D., and Srikumar, V. (2014b). Correcting grammatical verb errors. In

European Chapter of the Association for Computational Linguistics.

Rozovskaya, A., Sammons, M., and Roth, D. (2012). The ui system in the hoo 2012 shared task

on error correction.

Sakaguchi, K., Napoles, C., Post, M., and Tetreault, J. (2016). Reassessing the goals of gram-

matical error correction: Fluency instead of grammaticality. Transactions of the Association

for Computational Linguistics, 4:169�182.

Sakaguchi, K., Post, M., and Van Durme, B. (2014). E�cient elicitation of annotations for

human evaluation of machine translation. In Proc. of the Ninth Workshop on Statistical

Machine Translation, pages 1�11. ACL.

Sammut, C. and Webb, G. (2011). Encyclopedia of machine learning. Springer Science &

Business Media.

Sawai, Y., Komachi, M., and Matsumoto, Y. (2013). A learner corpus-based approach to verb

suggestion for esl. In Proceedings of the 51st Annual Meeting of the Association for Computa-

tional Linguistics (Volume 2: Short Papers), pages 708�713, So�a, Bulgaria. Association for

Computational Linguistics.

Schneider, D. and McCoy, K. F. (1998). Recognizing syntactic errors in the writing of second

language learners. In Proceedings of the 36th Annual Meeting of the Association for Computa-

tional Linguistics and 17th International Conference on Computational Linguistics - Volume

2, ACL '98, pages 1198�1204. Association for Computational Linguistics.

Selinker, L. and Gass, S. M. (1992). Language transfer in language learning. J. Benjamins

Publishing Company.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with

subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1715�1725, Berlin, Germany. Association for

Computational Linguistics.

Bibliography 110

Shannon, C. E. (1951). Prediction and entropy of printed english. Bell Labs Technical Journal,

30(1):50�64.

Stehouwer, H. and van Zaanen, M. (2009). Language models for contextual error detection and

correction. In Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects

of Grammatical Inference, CLAGI '09, pages 41�48, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Susanto, R. H., Phandi, P., and Ng, H. T. (2014). System combination for grammatical error

correction. pages 951�962.

Tajiri, T., Komachi, M., and Matsumoto, Y. (2012). Tense and aspect error correction for esl

learners using global context. In Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics: Short Papers - Volume 2, ACL '12, pages 198�202, Stroudsburg,

PA, USA. Association for Computational Linguistics.

Tamchyna, A., Fraser, A., Bojar, O., and Junczys-Dowmunt, M. (2016). Target-side context for

discriminative models in statistical machine translation. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1704�1714, Berlin, Germany. Association for Computational Linguistics.

Tetreault, J., Foster, J., and Chodorow, M. (2010). Using parse features for preposition selection

and error detection. In Proceedings of the ACL 2010 Conference Short Papers, ACLShort '10,

pages 353�358, Stroudsburg, PA, USA. Association for Computational Linguistics.

Tetreault, J. R. and Chodorow, M. (2008). The ups and downs of preposition error detection

in esl writing. In Proceedings of the 22Nd International Conference on Computational Lin-

guistics - Volume 1, COLING '08, pages 865�872, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Tetreault, J. R. and Chodorow, M. (2009). Examining the use of region web counts for esl error

detection. In Web as Corpus Workshop (WAC5), page 71.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech

tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human Language Tech-

nology � Volume 1, NAACL '03, pages 173�180, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Turner, J. and Charniak, E. (2007). Language modeling for determiner selection. In Human

Language Technologies 2007: The Conference of the North American Chapter of the Associ-

ation for Computational Linguistics; Companion Volume, Short Papers, NAACL-Short '07,

pages 177�180, Stroudsburg, PA, USA. Association for Computational Linguistics.

van den Bosch, A. and Berck, P. (2013). Memory-based grammatical error correction. In Pro-

ceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared

Task, pages 102�108, So�a, Bulgaria. Association for Computational Linguistics.

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. (2013). Decoding with large-scale neural

language models improves translation. In Empirical Methods on Natural Language Processing,

pages 1387�1392. Association for Computational Linguistics.

Bibliography 111

Wagner, J., Foster, J., and van Genabith, J. (2007). A comparative evaluation of deep and

shallow approaches to the automatic detection of common grammatical errors. In The 2007

Joint Conference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL), pages 112�121. Association for Computational

Linguistics.

Wang, K., Thrasher, C., Viegas, E., Li, X., and Hsu, B.-j. P. (2010). An overview of microsoft

web n-gram corpus and applications. In Proceedings of the NAACL HLT 2010 Demonstration

Session, pages 45�48. Association for Computational Linguistics.

Wang, Y., Wang, L., Zeng, X., Wong, D. F., Chao, L. S., and Lu, Y. (2014). Factored statistical

machine translation for grammatical error correction. In Proceedings of the Eighteenth Con-

ference on Computational Natural Language Learning: Shared Task, pages 83�90, Baltimore,

Maryland. Association for Computational Linguistics.

Wilcox-O'Hearn, L. A. (2013). A noisy channel model framework for grammatical correction.

In Proceedings of the Seventeenth Conference on Computational Natural Language Learning:

Shared Task, pages 109�114, So�a, Bulgaria. Association for Computational Linguistics.

Wu, J.-C., Yen, T.-H., Chang, J., Huang, G.-C., Chang, J., Hsu, H.-L., Chang, Y.-W., and

Chang, J. S. (2014). Nthu at the conll-2014 shared task. In Proceedings of the Eighteenth

Conference on Computational Natural Language Learning: Shared Task, pages 91�95, Balti-

more, Maryland. Association for Computational Linguistics.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., and Ng, A. Y. (2016). Neural language

correction with character-based attention. arXiv preprint arXiv:1603.09727.

Yannakoudakis, H., Briscoe, T., and Medlock, B. (2011). A new dataset and method for auto-

matically grading esol texts. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies-Volume 1, pages 180�189. Associ-

ation for Computational Linguistics.

Yi, X., Gao, J., and Dolan, W. B. (2008). A web-based english proo�ng system for english

as a second language users. In Third International Joint Conference on Natural Language

Processing, IJCNLP 2008, Hyderabad, India, January 7-12, 2008, pages 619�624.

Yoshimoto, I., Kose, T., Mitsuzawa, K., Sakaguchi, K., Mizumoto, T., Hayashibe, Y., Komachi,

M., and Matsumoto, Y. (2013). Naist at 2013 conll grammatical error correction shared task.

In Proceedings of the Seventeenth Conference on Computational Natural Language Learning:

Shared Task, pages 26�33, So�a, Bulgaria. Association for Computational Linguistics.

Yu, L.-C., Lee, L.-H., and Chang, L.-P. (2014). Overview of grammatical error diagnosis for

learning chinese as a foreign language. In Proceedings of the 1st Workshop on Natural Language

Processing Techniques for Educational Applications (NLPTEA'14), Nara, Japan, pages 42�47.

Yuan, Z. and Briscoe, T. (2016). Grammatical error correction using neural machine translation.

In Proceedings of NAACL-HLT, pages 380�386.

Yuan, Z., Briscoe, T., and Felice, M. (2016). Candidate re-ranking for smt-based grammatical

error correction. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building

Educational Applications, pages 256�266.

Bibliography 112

Yuan, Z. and Felice, M. (2013). Constrained grammatical error correction using statistical

machine translation. In Proceedings of the Seventeenth Conference on Computational Natural

Language Learning: Shared Task, pages 52�61, So�a, Bulgaria. Association for Computational

Linguistics.

Zesch, T. (2012). Measuring Contextual Fitness Using Error Contexts Extracted from the

Wikipedia Revision History. In Proceedings of EACL, pages 529�538.

Zhao, Y. and Ishikawa, M. K. H. (2015). Improving chinese grammatical error correction using

corpus augmentation and hierarchical phrase-based statistical machine translation. ACL-

IJCNLP 2015.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivations
	1.2 Goals and hypotheses
	1.3 Contributions of the thesis
	1.4 Thesis outline
	1.5 Publication notes

	2 Grammatical Error Correction
	2.1 Automated grammatical error correction
	2.1.1 Grammatical errors
	2.1.2 Errors of English learners
	2.1.3 Automatic error correction
	2.1.4 Difficulties in error correction

	2.2 Approaches to automated grammatical error correction
	2.2.1 Rule-based methods
	2.2.2 Formal grammars
	2.2.3 Language modeling
	2.2.4 Classification
	2.2.5 Statistical machine translation
	2.2.6 Combined approaches

	2.3 Shared tasks on GEC
	2.3.1 The HOO shared tasks
	2.3.2 The CoNLL shared tasks
	2.3.3 Other competitions

	2.4 Summary

	3 Data Sets
	3.1 Error corpora and monolingual data
	3.1.1 Learner's corpora
	3.1.2 Artificial errors
	3.1.3 Text revision histories
	3.1.4 Social networks for language learners
	3.1.5 Monolingual data

	3.2 The WikEd Error Corpus
	3.2.1 Extracting edits from Wikipedia
	3.2.2 Collecting corrective edits
	3.2.3 Edition filtering
	3.2.4 Corpus format

	3.3 Summary

	4 Evaluation Metrics
	4.1 Difficulties in evaluating GEC systems
	4.2 Evaluation metrics
	4.2.1 Standard metrics
	4.2.2 MaxMatch
	4.2.3 I-WAcc
	4.2.4 MT metrics

	4.3 Human evaluation of GEC systems
	4.3.1 Data collection
	4.3.2 Computing ranks
	4.3.3 Correlation with GEC metrics

	4.4 Summary

	5 Grammatical Error Correction Using Statistical Machine Translation
	5.1 Statistical machine translation
	5.1.1 Log-linear model
	5.1.2 Model training and tuning

	5.2 Feature functions
	5.2.1 Stateless features
	5.2.2 Stateful features

	5.3 Training and test data
	5.3.1 Parallel data
	5.3.2 Monolingual data
	5.3.3 Error rates

	5.4 Experiments
	5.4.1 Tuning and optimization
	5.4.2 Experiments with additional features
	5.4.3 Increasing the size of language model
	5.4.4 Additional parallel data
	5.4.5 Incorporating additional out-of-domain data

	5.5 Summary

	6 Discriminative Models for SMT-based Grammatical Error Correction
	6.1 Discriminative models
	6.1.1 Discriminative classifier
	6.1.2 Sparse features

	6.2 Feature templates
	6.2.1 Label-dependent features
	6.2.2 Sparse edit operations

	6.3 Experiments
	6.3.1 Multi-class discriminative classifier
	6.3.2 Tuning sparse features
	6.3.3 Sparse feature sets
	6.3.4 Additional data

	6.4 Evaluation
	6.4.1 Comparison with other systems
	6.4.2 Upper-bound for the task

	6.5 Summary

	7 Summary
	7.1 Contributions
	7.2 Future research

	A Error types in the NUCLE corpus
	B Sparse edit operation weights
	Abbreviations
	Symbols
	List of Tables
	List of Figures
	Bibliography

