
Gobio and PSI-Toolkit:

Adapting a deep parser to an NLP toolkit

Paweł Skórzewski

Adam Mickiewicz University

87 Umultowska Street, Poznań, Poland

pawel.skorzewski@amu.edu.pl

Abstract
The paper shows an example how an existing stand-alone linguistic tool may be adapted to a NLP toolkit that operates on different
data structures and a different POS tag-set. PSI-Toolkit is an open-source set of natural language processing tools. One of its main
features is the possibility of incorporating various independent processors. Gobio is a deep natural language parser that is used in the
Translatica machine translation system. The paper describes the process of adapting Gobio to PSI-Toolkit, namely the conversion of
Gobio’s data structures into the PSI-Toolkit lattice and opening Gobio’s rule files for edition by a PSI-Toolkit user. The paper also
covers the technical issues of substituting Gobio’s tokenizer and lemmatizer by processors used in PSI-Toolkit, e.g. Morfologik.

Keywords: natural language processing, parsing, data structures

1. Introduction

1.1. PSI-Toolkit

PSI-Toolkit is an open-source natural language
processing framework (Graliński et al., 2012; Jassem,
2012). It has been developed on Adam Mickiewicz
University in Poznań, by the Information Systems
Laboratory team (Pracownia Systemów Informacyjnych
in Polish, hence the toolkit’s name). It consists of a set of
tools (called processors) that can be run as a tool-chain.
There are three kinds of processors in PSI-Toolkit:
readers, writers and annotators. Firstly, a reader reads
data from an external source, e.g. an XML file, and
inserts the data into the main data structure, called PSI-
lattice. Then, a chain of annotators is applied. Among
annotators, there are a variety of natural language
processing tools, such as segmenters, tokenizers,
lemmatizers, parsers, machine translators and
spellcheckers. Finally, a writer writes the result in the
desired format to the screen or to the file.

PSI-Toolkit has a modular structure that allows adding
new processors. A user can apply the tool (e.g.
lemmatizer) of their choice. All annotators used in PSI-
Toolkit share the same data structure: the PSI-lattice,
which contains all the information about the current state
of processed data.

PSI-Toolkit can be operated in two ways: through the
command line interface or through a web service. It is
also distributed in packages for main Linux distributions
(Ubuntu, Debian, Linux Mint, Arch Linux).

1.2. Gobio

Gobio is a natural language parser. It is a deep parser, i.e.
its result is the full syntactic structure of a given sentence,
indicating the syntactic roles of constituents (in contrast
to shallow parsers). The parsing result has the form of the
parse tree that shows dependencies between constituents.
It is a type of a chart parser that uses a variant of Cocke-
Younger-Kasami algorithm. Gobio uses a tree-generating
binary grammar with weights (Graliński, 2006). Gobio

was originally developed as a deep parser for German
language in the Translatica machine translation system
(Jassem, 2006) and it can be used for parsing various
natural languages. Sets of rules for different languages,
including German, Polish, Russian and English, have
already been designed for the parser. Rules and weights
for some languages (Polish, Russian) have been created
manually, whereas rules and weights for other languages
(German, English) have been automatically extracted
from corpora.

As the parser was intended for a specific machine
translation system, Gobio is heavily integrated with (and
dependent on) other mechanisms and formats belonging
to Translatica, such as its segmenter, its lemmatizer or its
tagsets.

1.3. Goals

At the time of writing this paper, besides Gobio, PSI-
Toolkit includes two other parsers: Puddle and Link
Grammar Parser. Puddle is a shallow parser based on the
Spejd parser originally developed at IPI PAN
(Przepiórkowski and Buczyński, 2007). Link Grammar
Parser is a parser developed on Carnegie Mellon
University (Sleator and Temperley, 1995) that uses a link
grammar, where the result of parsing has a form of links
between words of the given sentence. However, the
grammar has the option to produce output in a form of a
simple parse tree. Both parsers are multilingual: they can
parse different languages if parsing rules are provided.
However, no Link Grammar rules have been developed
for the Polish language yet. Neither of these parsers can
produce a detailed parse tree.

We wanted to include the Gobio parser in PSI-Toolkit
in order to offer a deep parser in the toolkit. Furthermore,
we planned to include also the machine translation
module from Translatica in PSI-Toolkit. For this reason,
the inclusion of Gobio in PSI-Toolkit would be not only
complementary, but even necessary.

PSI-Toolkit is a flexible modular environment that
allows including different natural language processing
tools.

2. Main issues

In order to make the operation of including Gobio parser
into PSI-Toolkit successful, we had to solve a few
problems. Both systems have been written mainly in
C++, but there are many differences and incompatibilities
between them. PSI-Toolkit and Translatica use different
data structures and different tagsets. Translatica is a
system specifically geared towards machine translation,
and thus preparatory activities like sentence splitting,
tokenization or morphological analysis are executed by
tools heavily integrated with the system. We had to
separate those tools from the parser itself in order to
adapt Gobio to the modular system like PSI-Toolkit.

2.1. PSI-lattice and Gobio’s chart

PSI-lattice is the main data structure used in PSI-Toolkit.
It is a kind of a word lattice used in natural language
processing (Dyer et al., 2008). It consists of vertices,
marking positions in the input text, and edges that link
them and span appropriate substrings of text. During text
processing the reader creates the lattice, then the
subsequent annotators adds their edges to it, finally the
writer prints out the formatted lattice content. The basic
unit PSI-lattice is a single character, i.e. lattice’s vertices
are the inter-character points.

The Gobio parser has been build atop of a different data
structure: the chart. The chart is a structure similar to
lattice, basic units are words (rather than characters): the
chart vertices are the word boundaries.

2.2. Storing edge information

Each edge in the PSI-lattice consists of the following
elements:
 Source and target vertices. They indicate the

beginning and the end of text that is spanned by the
edge.

 Annotation results attached to the edges. They are
stored as strings indicating edge category, edge-
spanned text and processor-specific annotations, e.g.
morphosyntactic features, such as case, gender,
number, person, tense etc.

 Layer tags attached to the edges. They express some
meta-information, e.g. edge type, name of the
processor or tagset used.

 Partitions. They indicate which edges were used to
build the given edge.

 Scores (weights). These are floating-point values
assigned to the edges. A score can refer to the whole
edge, but there is also a possibility to assign different
scores to different partitions. Scores can be used as
indicators of edge likelihood in the process of
building a parse tree.

Edges of the original Gobio’s chart have also source
and target vertices (but they correspond to word
boundaries, not inter-character points), and scores with
floating-point values. There is no such thing like layer
tags in the chart. Each edge also stores information about
its partitions. The main difference is the structure of the
item responsible for storing information about edge
category and attributes. The chart stores this information
in elements called the attribute-value matrices (AV-
matrices). Categories and attribute values are stored in
AV-matrices as integers; the actual values corresponding
to these numbers are stored in structures called registrars.

2.3. Tagsets

At present, PSI-Toolkit uses two morphological
analyzers. One of them is Morfologik, a morphological
analyzer developed by Miłkowski (2010). Morfologik
uses a tagset based on that of the National Corpus of
Polish (Przepiórkowski, 2009). The second one is
Lamerlemma, a simple lemmatizer developed specially
for PSI-Toolkit. Lamerlemma uses the same tagset as
Morfologik.

Gobio uses its own tagset. It differs significantly from
the Morfologik tagset. It takes into account the lexicon
information such as verb valencies, which is not provided
in either Morfologik or Lamerlemma.

2.4. Sentence splitting, tokenization and
morphological analysis

PSI-Toolkit has a modular structure. Sentence splitters,
tokenizers, morphological analyzers and other tools are
independent processors. This approach is flexible because
it allows the user to choose the modules that are most
suitable for a given task. The approach used in
Translatica is different. It is a monolithic system, focused
on machine translation. Translatica segmenter, tokenizer
and lemmatizer are integral parts of the system.

We had to separate those processors from the actual
parser and modify Gobio in a way that allows using other
tools than integrated in Translatica.

2.5. Parsing results

In the original Gobio parser, the parsing result was
created as follows. First, the given sentence was inserted
into the chart. Then, a module called combinator tried to
combine edges form the chart to build new edges. In this
way, the forest that contained all possible partial parses
was created. Finally, a module called chooser selected the
edges for the final parse tree, according to tree-generating
binary grammar rules. The final parse tree was not
inserted into the chart, but rather it was stored in a
different, special data structure.

PSI-toolkit was created with the idea that both
intermediate results and the final result should be stored
explicitly in the PSI-lattice. This meant that we needed a
mechanism that would insert the Gobio’s parsing result
into the PSI-lattice.

3. Solutions

3.1. Zvalues

Zvalue is a special data type that can store various kinds
of values: numbers, strings, vectors, hashes or even parse
trees. Zvalue is a very efficient data type, because it is
implemented simply as a specially wrapped void pointer.

All values of annotation item attributes in PSI-Toolkit
are implemented as zvalues, which allows storing both
numbers and strings, or even more sophisticated values.
We had to modify Gobio’s structures to operate on
zvalues instead of integer values where necessary.

3.2. PSI-lattice wrapper and AV-AI converter

Translatica/Gobio’s chart and PSI-lattice have different
interfaces. We wrote a wrapper that hid PSI-lattice’s
interface so PSI-lattice could be handled by Gobio as if it

was a Translatica chart. This had to include conversion
between AV-matrices and annotation items.

We wrote a special class to convert AV-matrices into
annotation items and its category and attribute values:
AV-AI converter.

The drawback of this solution is that it causes a slight
slowdown of the parser performance, but it was necessary
to integrate the Gobio parser with the PSI-lattice
datastructure.

3.3. Tagset converter

In order to deal with different tagsets, we needed a
converter between Morfologik tags and Gobio/Translatica
tags, but we proposed a more general solution. We built a
tagset converter that can convert between any two tagsets
provided that conversion rules are specified. Tagset
converter is an independent tool in PSI-Toolkit, and it can
be linked with different tools of the framework. Thus the
proposed solution facilitates future system expansion and
work with other tagsets.

In addition to the conversion rules, a tagset converter’s
rule file contains the specification of the layer tags
indicating which kinds of edges should be converted.
There are two types of rules: simple substitutions and if-
then clauses. Substitution rules allow replacing edge
categories, attribute names and values. If-then clauses
allow conditional substitutions. A syntax of these clauses
allows specifying complex conditions on edge categories,
values of the attributes or even edge texts.

A sample tagset converter’s rule file is shown in Fig. 1.

Fig. 1: A sample tagset converter’s rule file

Lines beginning with # are treated as comments. The

two lines beginning with @source and @target
indicate the source tagset and the target tagset
respectively (or in fact their layer tags). The line
beginning with @tags indicates layer tags that should be
preserved in copied edges. Other lines beginning with @
contain simple substitution rules. Keywords @cat,
@attr and @val indicate which annotation type
(category, attribute or value) the substitution rule
concerns.

Nonempty lines that begin with symbols other than # or
@ contain if-then clauses. Each clause consists of
conditions and commands. The conditions block is
separated from the commands block by >>.

The conditions are separated by commas. If a condition
has a form of a single word, it is satisfied when the edge
text is equal to this word. Otherwise, a condition has a
form of an equation. It is satisfied when the value of the

attribute to the left is equal to the value to the right, or if
there is a keyword CAT to the left and edge category
equals the value to the right. For the commands to be
executed, all conditions have to be satisfied.

The commands are also separated by commas. All
commands have the form of equations. If the equation
does not contain the $ symbol, a value of the attribute to
the left is substituted by the value to the right in the
newly formed edge. If there is a keyword CAT to the left,
the edge category is changed to the value to the right. If a
string to the right is preceded by the $ sign, it means that
the value of the attribute to the left should be substituted
by the value of the attribute preceded by $. If there are
several values separated by a vertical line (|) to the right,
it means that the edge should be cloned and each copy
should get one of the given values.

This system, yet simple, allows writing even complex
conversion rules. Thanks to the tagset converter, we can
convert successfully every annotation expressed in the
Morfologik tagset to the Translatica/Gobio tagset.

3.4. Mapper and joiner

Because PSI-Toolkit lemmatizers provide no lexicon
information, we needed a simple lexicon and a valency
dictionary to feed Gobio. So we created mapper – a
universal lexicon for generic mapping tasks. Given a
valency dictionary, mapper generates the valencies.
Mapper is an independent tool in the PSI-Toolkit
framework.

Another important tool that had to be created in order to
provide lexicon information for the parser was joiner.
Joiner is a simple tool that produces a Cartesian product
of the specified two sets of edges. In this case, it allows
creating edges that are combinations of forms generated
by a lemmatizer and valencies generated by the mapper.
Such edges constitute the input for the Gobio parser.

3.5. Putting the final parse tree into the lattice

We provided a simple code that adds new edges
corresponding to edges of the final parse tree to the lattice
after the parsing is done. We also had to make several
changes to the existing chooser.

3.6. Machine translation

At the moment, there are two tree-to-string decoders in
PSI-Toolkit: Transferer and Bonsai. They can be applied
after parsing to create translations (a translator is a pipe
consisting of a sentence splitter, a tokenizer, a
lemmatizer, a parser and a tree-to-string decoder).

Transferer is a rule-based machine translation system. It
has been created to be compatible with Gobio. It uses
rules expressed in a special programming language
dedicated to the manipulation on parse trees.

Bonsai is a tree-to-string decoder dedicated to the
statistical machine translation. It operates on parsed input
so it requires a parser to be applied before.

Both Transferer and Bonsai combined with Gobio
create a decent machine translation that can be used for
various language pairs (e.g. Polish-English, Polish-
Spanish), depending on the available parsing and transfer
rules.

Morfologik to Translatica

tagset conversion rules.

@source morfologik-tagset

@target gobio-tagset

@tags lexeme form

@cat adj przym

@attr number L

@val sg 1

@val pl 2

CAT=rzecz, niż >> CAT=rzecz|przyim

CAT=rzecz, L=1, Rp=mo >> R=mż, R1=$Rp

4. Conclusions and future work

Adaptation of Gobio to PSI-Toolkit was a challenging
project that has brought us a lot of experience. We had to
face many difficulties arising during adaptation. The
resulting solutions, such as zvalues, PSI-lattice wrapper
or AV-AI converter, can be the basis for components of
further projects. Integration of Gobio with PSI-Toolkit
was also an impulse for the creation of a number of useful
tools like mapper, joiner and tagset converter.

In PSI-Toolkit, Gobio can be connected with one of the
translators and create a machine translation system.

We claim that a lattice data structure assumed for PSI-
Toolkit, has proved helpful for the adaptation of an
external NLP tool.

The case described here confirms the postulate for
architecture modularity in NLP systems. The modularity
of PSI-Toolkit makes it possible to adapt various external
resources (including Gobio), whereas the lack of this
feature in the Translatica architecture has brought about
several problems that had to be solved in order to extract
the parser from the MT system.

We plan to further develop the Gobio parser within the
PSI-toolkit framework. This will include adding parsing
rules for more languages. We also plan to implement
alternative parsing algorithms.

Acknowledgements

This paper is based on research funded by the Polish
National Science Centre (decision no. DEC-
2011/01/N/ST6/02032).

References

Dyer, C., Muresan, S. and Resnik, P. (2008).
Generalizing word lattice translation. In:
McKeown, K., Moore, J.D., Teufel, S., Allan, J. and
Furui, S. (Eds.): ACL, The Association for Computer
Linguistics, pp. 1012–1020.

Graliński, F. (2006). Some methods of describing
discontinuity in Polish and their cost-effectiveness.
Lecture Notes in Artificial Intelligence 4188, pp. 69-
77. Heidelberg: Springer.

Graliński, F., Jassem, K. and Junczys-Dowmunt, M.
(2012). PSI-Toolkit: Natural language processing
pipeline. Computational Linguistics – Applications,
Heidelberg: Springer.

Jassem, K. (2006). Przetwarzanie tekstów polskich
w systemie tłumaczenia automatycznego POLENG.
Poznań: Wydawnictwo Naukowe UAM.

Jassem, K. (2012). PSI-Toolkit – how to turn a linguist
into a computational linguist. TSD 2012. Lecture Notes
in Computer Science, Springer.

Miłkowski, M. (2010). Developing an open‐source,
rule‐based proofreading tool. Software: Practice and
Experience 40(7), pp. 543-566.

Przepiórkowski, A. (2009). A comparison of two
morphosyntactic tagsets of Polish. In: Koseska-
Toszewa, V., Dimitrova, L. and Roszko, R. (Eds.):
Representing Semantics in Digital Lexicography:
Proceedings of MONDILEX Fourth Open Workshop,
Warsaw, pp. 138-144.

Przepiórkowski, A. and Buczyński, A. (2007). SPADE:
Shallow Parsing and Disambiguation Engine,

Proceedings of the 3rd Language and Technology
Conference, Poznań.

Sleator, D.D. and Temperley, D. (1995). Parsing English
with a link grammar. arXiv preprint cmp-lg/9508004.

