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Abstract

This thesis describes the automatic summarization system developed for the Polish language.

The system implements trainable sentence-based extractive summarization technique, which

consists in determining most important sentences in document due to their computed salience.

Neural networks were used as a machine learning algorithm. A structure of the system is pre-

sented, as well as the evaluation methods and achieved results. The presented attempt is the

�rst summarization project evaluated against the Polish Summaries Corpus, the standardized

corpus of summaries for the Polish language.

Niniejsza praca opisuje system zdolny do automatycznego streszczania tekstu napisanego

w j¦zyku polskim. System implementuje metod¦ automatycznego streszczania, polegaj¡ce na

selekcji zda«. Metoda ta ma na celu wybranie najwa»niejszych zda« z tekstu, na podstawie ich

obliczonej wa»no±ci. Do stworzenia systemu wykorzystano algorytm uczenia maszynowego �

sieci neuronowe. Praca przestawia zarówno struktur¦ systemu, jak i sposoby oraz wyniki jego

ewaluacji. Opisane podej±cie prezentuje pierwszy system automatycznego streszczania, do

którego ewaluacji wykorzystano Polish Summaries Corpus. Jest to zbiór r¦cznie stworzonych

streszcze« dla tekstów napisanych w j¦zyku polskim.
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Introduction

Automatic text summarization is a very active research �eld in recent years. Its purpose is

to reduce a text document, by extracting its most important parts in order to create more

condensed, but still human-readable form, known as summary. The task consists in the

creation of an appropriate computer application and a framework for testing and evaluation.

The scope of this work includes:

• developing a sentence-based extractive summarization system, which would be able to

create summaries of newspaper articles,

• implementing well-known automatic summarization techniques, as well as introducing

experimental ones,

• tuning neural networks algorithm in order to achieve satisfactory performance,

• using the Polish Summaries Corpus, a resource created by Ogrodniczuk and Kope¢

in [16] to train the automatic summarization system, what has not been done so far,

• evaluating the performance of the system using well-known standardized evaluation

method, based on the ROUGE summarization evaluation package introduced at Docu-

ment Understanding Conference (DUC) in 2004, by Chin-Yew Lin [10],

• performing comparison of di�erent evaluation methods for automatic summarization.

The thesis is organized as follows: Chapter 1 brie�y describes the aim of the summarization

task and main methods in the �eld. Chapter 2 introduces the neural networks theory. Chapter

3 provides a review of already existing summarization systems for the Polish language. In

chapter 4 Polish Summaries Corpus is described in detail. Chapter 5 outlines our solution,

it's overall framework, as well as the employed set of features. Chapter 6 introduces the

evaluation methodology and presents executed experiments and their results. Eventually,

Chapter 7 contains some conclusions and the outline for future work.
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CHAPTER 1

Automatic Summarization

This chapter brie�y describes the automatic summarization task. The main aims of automatic

summarization are pointed out as well as basic de�nitions are introduced. Most important

methods of automatic summarization are introduced too.

1.1. Aim of automatic summarization

Modern digital technologies, including World Wide Web, result in information excess. Every-

day brings vast amount of new on-line information of various type. Processing this continu-

ously growing information databases is not possible by a single human. Automatic summa-

rization is an attempt to confront information processing needs. It is based on the assumption

that a computer system can read all data quickly and present its condensed from.

In fact, di�erent forms of summarization are processes, which occur in everyday life in

many areas. In the midst of a huge number of examples are such as [12]:

• Newspaper headlines, which can be found as some form of summaries,

• summaries in the body of news stories,

• show previews or trailers,

• abstracts of scienti�c articles,

• conference programs,

• stock market bulletins.

A summary may concern many di�erent multimedia forms, such as: text, picture, movie or

audio segment. Summary input may be represented in one of these forms or in a combination

of them. However, this broad description of summarization is hard to be adopted in automatic

process, where strict formal and intuitive de�nitions are needed. This thesis covers automatic

document summarization, where input, as well as output form a coherent text. This form of

summarization can be formalized as follows [Lloret]:

De�nition 1. (Summary). Summary can be de�ned as a text that is produced from one or

more texts, that contains a signi�cant portion of information in the original text(s), and that

is no longer than half of the original text(s).
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Following on this de�nition of summary, a concept of summarizer is de�ned [12]:

De�nition 2. (Summarizer). Summarizer is a system whose goal is to produce a condensed

representation of the content of its input for human consumption.

These two de�nitions may form the basics for the automatic document summarization

�eld, indicating its main goals and outlines.

1.2. Basic notions of summarization

Automatic text summarization may be classi�ed according to program's input or output. As

regards input, summarization may concern one document (single-document summariza-

tion) or multiple documents (multi-document summarization).

As regards output, three essential distinctions should be introduced. These distinctions

are not exclusive as they refer to di�erent aspects of summarization.

Firsly, one may distinguish [12]:

Extract

A summary that entirely consists of text copied from the input. Extracted text can

contain paragraphs, sentences, phrases, terms or even single nouns. These summaries

are obviously easier to obtain, since the extracted elements of original text are not

modi�ed at all.

Abstract

A summary that consists of at least some material that is not present in the input.

Source text may be changed, so a more condensed form is possible in this case.

Secondly, summaries may be distinguished according to information they contain [Lloret]:

Indicative

A summary that indicates source text's topics and gives a brief idea of what the original

text is about. This type of summarization may provide some references for more in-

depth reading of original documents.

Informative

A summary that covers the whole topics in the source text. Mani ( [12]) states that the

aim of the informative summary is to cover "all the salient information in the source

at some level of detail". Informative summarization can in fact be viewed as a proper

subset of indicative ones.

Critical evaluative abstract

A summary that takes into account the abstractor's view on the quality of the source
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document. An example of an abstract is a review. In fact, this type of abstracts is

beyond the automatic summarization as it provides information, which is not present

in the source document, as: opinions, recommendations of feedback.

The last essential distinction refers to the type of the user the summary is intended for.

In this case, one can distinguish:

Generic summaries

A summary that is created for broad audience, with no particular, precise aim. Often,

it serves as a replacement of original document, although it can be indicative as well.

User-focused (a.k.a. query-driven) summaries

A summary tailored to the requirements of a particular user or group of users [12]. It

may respond to user's information needs expressed as topic or query [Lloret]. In some

cases a user-focused summary may take into account some kind of user model or pro�le

to adjust the summary, without the query.

Another distinction may refer to the language of the text and the summary. The following

summarization types can be determined:

Monolingual

All documents, as well as results are in the same language.

Multilingual

Input documents are in di�erent languages and the results are in the same languages as

its sources.

Cross-lingual

Input documents are in di�erent languages, but the result is in a single language, which

may even be di�erent than input ones.

A summary may be also restricted to a particular sublanguage, for example the technical

language.

Another important notion in summarization is the coherence. It indicates how various

text segments combine into an integrated whole. If the text segments are disjointed, refer

to the same ideas, have gaps in reasoning or in general are not well organised, then the

text is regarded as incoherent. Random collection of sentences is an extreme example of

incoherent text [12]. The need for coherence depends of the summarization purpose and type

of summarized documents.

All the distinctions mentioned above should be taken into account by the summarization

system. They can be summed up and complemented as follows: [12]:

• Compression rate � summary length/source length
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• Relation to source � extract/abstract

• Function � informative/indicative

• Audience � user-focuses/generic

• Coherence � coherent/incoherent

• Span � single-document/multi-document

• Language - monolingual/multilingual/cross-lingual

• Genre � type of the text: technical reports, news stories, email messages etc.

• Media � media types concerned (text, audio, pictures)

A de�nition of salience is crucial for summarization methods [12]:

De�nition 3. (Salience). Salience is the weight attached to information in a document,

re�ecting both the document content as well as the relevance of the document information to

the application.

This quite loose, theoretical de�nition indicates the requirement of summarization methods

to indicate the relevance of parts of document.

1.3. Methods of summarization

Literature often considers automatic summarization a three-stage process. Lloret (2006)

names the following steps of the process:

1. interpretation of the source text in order to obtain a text representation,

2. transformation of the text representation into a summary representation,

3. generation of the summary text from the summary representation.

As stated by Mani ( [12]), the idea of multi-dimensional linguistic charts is useful to

visualise possible relationships in summarized elements and levels of linguistic analysis.

This conception is presented at Figure 1.1. Vertical axis represents various text parts, such

as words, phrases, sentences or paragraphs. Horizontal axis � position, indicates the ordering

of the elements in the input. Possible level of linguistic analysis of these elements are assigned

to in-depth axis. There are various levels of linguistic analysis: morhological, syntactic,

semantic and discourse. Interpretation is then viewed as a process of going from shallow to

deeper level of analysis and generation goes the reverse direction.
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Figure 1.1. The Linguistic Space (source: [12])

According to the linguistic space, methods of text summarization may di�er as far as the

level of processing is concerned: surface, entity, or discourse levels [14]. It is worth noting

that there exist systems, which adopt hybrid-approaches.

Surface-level approaches make use of shallow features to analyze information included in a

text document. Usually, these features are combined together into a salience function

used to extract information. Examples of such features are:

• Thematic features � based on term frequency analysis and statistically salient

terms,

• Location features � based on position in text, paragraph or section depth,

• Background features � based on presence of title or headings terms, or a user's

query,

• Cue words and phrases � based on presence of special `bonus' or `stigma' terms.

Entity-level approaches are based on the internal representation of text. They model text

entities and their relationships across a document. Examples of such relationships

between entities are:

• Similarity � e.g. vocabulary overlap,
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• Proximity � distance between text units,

• Co-occurrence � words occurring in common contexts,

• Thesaural relationship among words � e.g. synonymy, hypernymy,

• Coreference � e.g. anaphora, cataphora, noun phrases,

• Logical relations � e.g. agreement, contradiction, entailment, consistency,

• Syntactic relations � e.g. relations based on parse trees,

• Meaning representation-based relations � e.g. predicate-argument relations.

Discourse-level approaches model the global structure of text, and its relation to commu-

nicative goals. Examples of such structures are:

• Format of the document,

• Threads or topics as they are revealed in the text,

• Rhetorical structure of the text.

1.4. Extraction

This thesis applies the extraction method of automatic summarization. Extraction approaches

tend to use shallow linguistic analysis. Sentence semantics is often avoided. Smaller segments,

such as words, are taken into account. These methods usually avoid deep text understanding,

emphasizing simplicity, ease of implementation and computing time [24]

Extractive summaries are created by extracting key text segments from the text. The

most important part of these methods is to determine salient text units. This can be done by

looking at the text unit's lexical and statistical relevance or by matching phrasal patterns [6].

The resulting summary is a concatenation of original parts of the source. Sentences are

quite popular choice as a size of extraction units. Usually, the particular text unit's salience

is determined by the linear weighting model, which can be represented by formula ( 1.1),

where A(u), B(U), . . . , Z(U) are calculated values of features (thematic, locational, etc.), and

α, β, . . . , ω are weights assigned to them.

Salience(U) = α ∗A(U) + β ∗B(U) + · · ·+ ω ∗ Z(U) (1.1)

Selection of features as well as the weight tuning may be done manually. There are

also attempts to create supervised machine learning algorithms, which are based on a set of

documents and their manually created summaries (corpus). In such cases the weights are

determined by these algorithms. It must be emphasized that the importance of features often

varies with the system. Mani ( [12]) states, that discovering good features for a classi�cation
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Figure 1.2. Corpus-based approach to sentence extraction (source: [12])

is a crucial, yet not easy, task. Usually, a system employs a mix of `well-established' features

discussed in literature, along with new experimental features.

The conception of a trainable corpus-based extractive system is presented in Figure 1.2.

Mani describes this conception as follows [12]:

A corpus of documents and their summaries are required for training the sum-

marizer. Elements (usually sentences) from each source document are extracted,

analysed in terms of the features of interest, and then labelled by comparison

with the corresponding summary. The labelled feature vectors are then fed to a

learning algorithm, which emerges with rules that can be used to classify each

sentence of a test document as to whether it should be extracted into a summary.

The accuracy of the classi�er can then be measured against held-out test data, i.e.,

data the classi�er has not been trained on.
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Several key aspects have been introduced in the above quotation. These can be clari�ed

as follows:

Labelling is a procedure of comparing the source document sentence with the summary. It

is a trivial task if the summary is an extract, not an abstract. The goal is to analyse

the sentences from the source for the features, which make them belong in the extract.

Analysing abstract summaries in order to create extracts is much harder to do and will

not be covered here. In fact, labelling may be a {0, 1} function or a continuous one.

Learning representation depends on the machine learning algorithm used, as well as on

the system implementation. The result of learning may be represented as a set of rules

or mathematical functions and it should have the machine-readable form.

Evaluation of an automatic summarization system is a complex task and will be discussed in

Chapter 6. The main goal is to measure the accuracy of the system against a reference

summary (or a set of summaries). Evaluation regards such issues as agreement between

references and adequate measurement techniques.
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CHAPTER 2

Neural Networks

This chapter will introduce one of the most common approaches to machine learning, namely

neural networks. Machine learning is an arti�cial intelligence discipline, which takes into

account autonomous learning of computer software. Neural networks are an attempt to

provide a mathematical model of human brain and its computing structure. It is worth

noting that neural networks are only a theoretical model which does not translate precisely

to brain's complexity of cognition.

According to Stuart Russel's and Peter Norvig's "Arti�cial Intelligence: A Modern Ap-

proach" book:

We do know that the neuron, or nerve cell, is the fundamental functional unit

of all nervous system tissue, including the brain. Each neuron consists of a cell

body, or soma, that contains a cell nucleus. Branching out from the cell body

are a number of �bres called dendrites and a single long �bre called the axon.

Dendrites branch into a bushy network around the cell, whereas the axon stretches

out for a long distance�usually about a centimeter (100 times the diameter of

the cell body), and as far as a meter in extreme cases. Eventually, the axon also

branches into strands and substrands that connect to the dendrites and cell bodies

of other neurons. The connecting junction is called a synapse. Each neuron forms

synapses with anywhere from a dozen to a hundred thousand other neurons. [19]

Figure 2.1 presents a visual conceptualisation of the above description. Complicated

electrochemical reactions are used to propagate signals in this network. Chemical transmitter

substances enter the dendrite, altering electrical potential of the cell body. If the potential

reaches a threshold, an electrical pulse is released through the axon and transmitted to other

neurons. This creates the most basic cognition mechanism of the brain. Di�erent patterns

of stimulation in a network can cause a long-term changes in the strength of connections

and even sometimes entire collections of neurons can change its structure signi�cantly. These

phenomenon, called neroplasticity, is believed to form the basics for learning in the brain [19].

The following sections present the theoretical background for the arti�cial neural networks,

which try mimic this structure.
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Figure 2.1. The parts of a neuron (source: [19])

2.1. Theoretical background

Figure 2.2 presents an abstract neuron, called also a computing unit. It has n inputs, where

each input i can transmit a real value xi altered by the corresponding weight wi. In general,

these inputs are the outputs of other neurons. All these n values are an input for the primitive

function f computed in the body of the neuron, resulting in value y [18].

Figure 2.2. An abstract neuron with n inputs and their corresponding weights.

This is simple abstraction of a single node in neural network. Rojas states that: "If

we conceive of each node in an arti�cial neural network as a primitive function capable of

transforming its input in a precisely de�ned output, then arti�cial neural networks are nothing

but networks of primitive functions" [18]. This idea can be formalized as follows [8]:

De�nition 4. (Neural Network). A neural network is a sorted triple (N,V,w) with two

sets N , V and a function w, where N is the set of neurons and V a set {(i, j)|i, j ∈ N} whose
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elements are called connections between neuron i and neuron j. The function w : V → R
de�nes the weights, where w((i, j)), the weight of the connection between neuron i and neuron

j, is shortened to wij.

Each neuron in a network is desired to do some computations based on delivered input

and a given set of weights. Usually, a neuron needs to compute a sequence of functions in

order to return the value. These functions include [8]:

Propagation function � for a neuron j this function receives the outputs oi1, . . . , oin from

other neurons i1, . . . , in (which are connected to given neuron), and transforms them in

consideration of the connecting weights wi,j into the network input netj . Formally:

De�nition 5. (Propagation Function and network input). Let I = {i1, . . . , in} be the

set of neurons, such that ∀z ∈ {1, . . . , n} : ∃wiz ,j. Then the network input of j, called

netj, is calculated by the propagation function fprop as follows:

netj = fprop(oi1, . . . , oin, wi1,j , . . . , win,j) (2.1)

The weighted sum is a very popular choice for the propagation function. It is computed

as follows:

netj =
∑
i∈I

(oi · wi,j) (2.2)

Activation function � determines the reaction of neuron j to the input values. It indicates

a neuron's activity in the network. To present formal de�nition of activation function,

a concept of the threshold needs to be provided::

De�nition 6. (Threshold value in general). Let j be a neuron. The threshold value Θj

is uniquely assigned to j and marks the position of the maximum gradient values of the

activation function.

In simple terms, the threshold value represents the threshold at which a neuron starts

�ring.

De�nition 7. (Activation function). Let j be a neuron. The activation function is

de�ned as

aj(t) = fact(netj(t), aj(t− 1),Θj) (2.3)

Therefore, activation function is a function of a time. It transforms the network input

netj , as well as the previous activation state aj(t−1) of the neuron into a new activation

state aj(t), with the threshold value Θ. The activation function is often de�ned globally

for all neurons in the network and only the threshold values are di�erent for each neuron.

There are some popular choices for the activation function, which include:
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• binary threshold function (Heaviside function) � the activation state remains

constant, unless the input is above a certain threshold. Therefore, it can take

only two values.

• logistic function (Fermi function) � it maps the input to the range of (0,1). It is

computed as in ( 2.4) formula.
1

1 + e
−x
T

(2.4)

T is a temperature parameter. The smaller it is, the more does it compress the

function on the x axis.

• hyperbolic tangent � it maps the input to the range of (-1,1).

These functions are presented at Figure 2.3.

Figure 2.3. Example activation functions. From left to right: Heaviside function, Fermi function

and hyperbolic tangent. Fermi function plot illustrates the function for di�erent T values (source:

wolframalpha.com)

Output function � calculates the values which are transferred to the other neurons con-

nected to the given one. Formally:

De�nition 8. (Output function). Let j be a neuron. The output function

fout(aj) = oj (2.5)

calculates the output value oj of the neuron j from its activation state aj.

The output function is also de�ned globally. Unless explicitly speci�ed otherwise, it is

the identity function, i.e. the output of the neuron is equal to its activation function.

Di�erent network topologies can be applied to di�erent problems. In general, the topology

refers to the arrangement of the elements (nodes and connections) of a network. Generally,

neural networks are classi�ed into feed-forward and feed-back networks.
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Feed-forward network

Christopher Bishop states in ( [1]), that "In general we say that a network is feed-

forward if it is possible to attach successive numbers to the inputs and to all of the

hidden output units such that each unit only receives connections from inputs or units

having a smaller number". Therefore, is feed-forward networks the signals can only

travel in one direction. In feed-forward neural networks neurons are grouped in layers.

There is one input layer, a number of hidden layers and one output layer. Input

and output layers act as a communication with the outside world. Data is forwarded

to the input layer, which performs calculations. The results of this calculations become

then the new input values for the next layer. This process continues until it has gone

through all the layers and the network's results are returned through the output layer.

Hidden layers are invisible from the outside of network. Neurons placed in this layers

are called hidden neurons. In this topology, each neuron in one layer has only directed

connections to the neurons of the next layer [8]. Completely linked layers are ones

in which every neuron is connected to all neurons of the following layer. Figure 2.4

illustrates an example of completely linked feed-forward network. This thesis uses the

feed-forward networks.

Feed-back network

In feed-back network the signals can travel in both directions and loops are possible. In

general, all possible connections between neurons are allowed. This creates an internal,

temporal states of the network. These networks do not always have explicitly de�ned

input or output neurons [8]. Feed-back networks are also called the recurrent neural

networks.

There is a popular practice to replace a threshold value with a bias unit in such networks.

Is is realized as an extra neuron in the layer and its activation function is always 1. Through

the weight assigned to this neuron, bias behaves as a threshold. This is a big facilitation in

the implementation of a network, as well as its performance.

2.2. Learning

Learning algorithms can be divided into supervised and unsupervised methods. In case

of unsupervised learning only the input patterns are given during network training. The

network then tries to identify similar patters and classify them into similar categories. On

the other hand, supervised learning assumes that the training set consists of input patterns,

as well ass desired outputs of the network. Therefore, for each training set, the network

modi�es its weights in order to not only identify given input patterns in the future, but

provide correct outputs to unknown, similar input patterns as well. The reinforcement
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.

Figure 2.4. Feed-forward Neural Network. It has two input neurons, three hidden neurons and two

output neurons.

learning is introduced as a type of learning, where instead of desired outputs, the network

receives a measure whether the result was right or wrong and, possibly, how right or wrong

it was [8].

The backpropagation algorithm is used in layered feed-forward neural networks in

case of supervised learning. This algorithm indicates that the network's signal is propagated

forward and then the errors are propagated backwards. The error in this case is the di�erence

between actual and expected results. The aim of this algorithm is to reduce this error during

training. Usually, the training begins with random weights at connections in network and

after the training is done, these weights are adjusted in order to return minimal error [5].

The error function for the output of each neuron can be de�ned as in the ( 2.6) formula.

The aj is the activation state of the jth neuron and dj is the desired activation state. It is the

square of the di�erence, because it is always positive and it will be greater if the di�erence is

big, and lesser if the di�erence is small [5].

Ej(d) = (aj − dj)2 (2.6)

Then the error of the network can be de�ned as the sum of the errors of all neurons in the

output layer. It is presented at ( 2.7) formula.

Ej(d) =
∑
j

(aj − dj)2 (2.7)

The gradient descent method is de�ned as in ( 2.8) formula. It is used to adjust the weights

in the network during training.

∆wij = −η ∂E
∂wij

(2.8)
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Therefore, the adjustment of each weight wij is equal to the negative constant η multiplied

by dependence of the previous weight on the error of the network. The size of the ajdustment

depends on η and the contribution of the weight to the error [5].

Lastly, the linear separability is de�ned as follows [18]:

De�nition 9. (Linear Separability). Two sets A and B of points in an n-dimensional space

are called absolutely linearly separable if there exist real numbers w1, . . . , wn+1 , such that

every point (x1, . . . , xn) ∈ A satis�es
∑n

i=1wixi ≥ wn+1 and every point (x1, . . . , xn) ∈ B

satis�es
∑n

i=1wixi < wn+1.

2.3. Parameters

From a practical point of view, there are several parameters that must be taken into ac-

count when designing a neural network. These parameters a�ect signi�cantly the network's

performance, learning capabilities and accuracy. It is necessary to adjust them depending

on the considered problem and the training dataset. Wrong adjustment of these parameters

may lead to under�tting or over�tting the network. Under�tting means that the network

will be too simple to predict output properly for a complicated dataset. Over�tting occurs

when network's information processing capacity is much bigger than the amount of informa-

tion, which can be provided by the dataset during training. Network is then more accurate

in �tting data from the dataset, but less acurate in predicting new data. Neural network's

parameters include:

Number of layers

Number of hidden layers is one of the most important parameters in neural network.

Appropriate selection of the network topology is crucial in achieving satisfactory training

results. Neural networks with di�erent numbers of hidden layers are capable of solving

di�erent types of problems. According to Je� Heaton ( [7]) it is to possible to de�ne an

overall rule of determining the number of hidden layers, as presented in Table 2.1. In

general, neural network with two hidden layers can represent a function with any kind

of shape. Therefore, there is no reason to use any more than two layers.

Number of neurons per layer

Number of neurons in hidden layers is also very important and should be carefully

selected. If there are too few neurons in the hidden layers, the under�tting may occur.

Using too many neurons in the hidden layers may cause a problem of over�tting, which

means, that not all neurons will be trained su�ciently. However, if the amount of data

is su�cient, training network with too many neurons may take too much time [7].
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Number

of hidden

layers

Result

none Only capable of representing linear separable functions or decisions.

1 Can approximate any function that contains a continuous mapping from

one �nite space to another.

2 Can represent an arbitrary decision boundary to arbitrary accuracy with

rational activation functions and can approximate any smooth mapping

to any accuracy.

Table 2.1. Determining the number of hidden layers (source: [7])

Number of epochs

Number of epochs is a number of learning iterations over training data. It can also

represent maximum number of iterations, if training uses minimum error parameter.

Again, using too many epochs may lead to over�tting. On the other hand, using too

few epochs may cause under�tting.

Learning rate

This parameter controls the size of weight changes during learning of the training

algorithm. It can have a big impact on learning time, as well as a possibility of �tting

the dataset.

Momentum

Momentum parameter m adds a fraction m of the previous weight update to the current

one. It is used to prevent the network from converging to a local minimum. If momentum

is high, it can increase the speed of convergence of the network, but can create the risk

of not �nding the minimum. On the other side, too low momentum may slow down the

training.

Minimum error

Desired error function value of the training iteration. Network's training stops if this

value is reached.

2.4. Tools

2.4.1. PyBrain

PyBrain is a modular Machine Learning library for Python [20]. It consists of a number of

easy-to-use machine learning algorithms, including neural networks. PyBrain is an abbrevi-
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ation for Python-Based Reinforcement Learning, Arti�cial Intelligence and Neural Network

Library. It is a �exible and e�ective tool. The library is open-source and free to use (licensed

under BSD Software License). Some examples of using PyBrain are below:

Creating neural network

Listing 2.1 ilustrates an example of how to use the shortcut function buildNetwork to

create the neural network. This simple call returns a network that has two input, three

hidden and a single output neuron. More sophisticated networks can also be created

using this function. Its optional parameters can be used to set hidden or output layers

type, or weather to use bias or not. In fact, one of the library's biggest strengths is the

possibility of creating very sophisticated network topologies.

Listing 2.1. Creating neural network with PyBrain.

>>> from pybrain . t o o l s . s ho r t cu t s import buildNetwork

>>> net = buildNetwork (2 , 3 , 1)

Activating a network

To calculate the network's output, there is the .activate() method, as ilustrated at

Listing 2.2. It is possible to activate the network without training, as it is initialized

with random values. This method expects a list, tuple or an array as an parameter. It

corresponds to the network's input and its length should be the same as the number of

input neurons in the network. The array returned by the network represents the output

neurons its length is the same as number of output neurons. Its interpretation depends

on the training data.

Listing 2.2. Activating neural network with PyBrain.

>>> net . a c t i v a t e ( [ 2 , 1 ] )

array ( [ −0 .98646726 ] )

Examining the structure

Each layer in PyBrain has its own class, which determines its behaviour. Each layer

has also its unique name, which distinguishes it from the other layers in the network.

It is possible to access di�erent parts of network using their names as illustrated at

Listing 2.3. The buildNetwork function uses some names, as well as layer's classes by

default. The default class for input and output layer is the LinearLayer, which is the

name for the identical function in PyBrain. The default function for all hidden layers

is the SigmoidLayer, which is some special case of logistic function.
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Listing 2.3. Examining the neural network's structure with PyBrain.

>>> net [ ' in ' ]

<LinearLayer ' in '>

>>> net [ ' hidden0 ' ]

<SigmoidLayer ' hidden0 '>

>>> net [ ' out ' ]

<LinearLayer ' out '>

Di�erent network's topologies

PyBrain allows to create very �exible network topologies. Each layer in network has

assigned class, which indicates their neurons activation function. Listing 2.4 illustrates

a simple example of customized network. In this case the TanhLayer is used for the

hidden layers, what indicates using hyperbolic tangent for them and the SoftmaxLayer,

a normalized exponential, is used for the output layer.

Listing 2.4. An example of creating neural network with non default topology with PyBrain.

>>> from pybrain . s t r u c tu r e import SoftmaxLayer

>>> net = buildNetwork (2 , 3 , 2 , h iddenc l a s s=TanhLayer , \

ou t c l a s s=SoftmaxLayer )

PyBrain uses its own dataset model, which is available in the pybrain.dataset package.

The following examples presents the SupervisedDataSet class usage. It is a standard class

used for supervised learning:

Creating the dataset

Listing 2.5 illustrated an example of creating the datasets. The SupervisedDataSet

constructor creates dataset object with the speci�ed size of input and target values. In

the example above, the dataset has two dimensional inputs and one dimensional target.

Listing 2.5. Creating the dataset with PyBrain.

>>> from pybrain . da ta s e t s import SupervisedDataSet

>>> ds = SupervisedDataSet (2 , 1)

Adding samples

To add new samples to the dataset, the addSample() method is used as presented in

Listing 2.6.
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Listing 2.6. Adding samples to the dataset with PyBrain.

>>> ds . addSample ( ( 0 , 0 ) , ( 0 , ) )

>>> ds . addSample ( ( 0 , 1 ) , ( 1 , ) )

>>> ds . addSample ( ( 1 , 0 ) , ( 1 , ) )

>>> ds . addSample ( ( 1 , 1 ) , ( 0 , ) )

Examining the dataset

An existing dataset can be examined in a few di�erent ways. To check how many

samples are included in a dataset, the python's len() function can be used as presented

in Listing 2.7. In turn, Listing 2.8 illustrates how to iterate over the dataset. Input

and target �elds can be accessed directly as well, as presented in Listing 2.9.

Listing 2.7. Dataset size with PyBrain.

>>> len ( ds )

4

Listing 2.8. Iterating over the dataset with PyBrain.

>>> for inpt , t a r g e t in ds :

. . . print inpt , t a r g e t

. . .

[ 0 . 0 . ] [ 0 . ]

[ 0 . 1 . ] [ 1 . ]

[ 1 . 0 . ] [ 1 . ]

[ 1 . 1 . ] [ 0 . ]
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Listing 2.9. Direclty accesing the dataset with PyBrain.

>>> ds [ ' input ' ]

array ( [ [ 0 . , 0 . ] ,

[ 0 . , 1 . ] ,

[ 1 . , 0 . ] ,

[ 1 . , 1 . ] ] )

>>> ds [ ' t a r g e t ' ]

array ( [ [ 0 . ] ,

[ 1 . ] ,

[ 1 . ] ,

[ 0 . ] ] )

Lastly, in order to train the created neural network, the trainers module is used. Trainers

take a neural network module and a dataset and trains the module to �t the data in the

dataset. A training module can be used as follows:

Creating trainer

Listing 2.10 illustrates the creation of a backpropagation trainer. The net is the

previously created neural network module and ds is a dataset. In fact, the dataset

in this example is built for XOR function. Using optional parameters, it is possible to

set the learning rate, as well as momentum values.

Listing 2.10. Creating a trainer with PyBrain example.

>>> from pybrain . supe rv i s ed . t r a i n e r s import BackpropTrainer

>>> t r a i n e r = BackpropTrainer ( net , ds )

Training

In PyBrain there are two simple ways to train the neural network. Listing 2.11

presents an example of training the network for one full epoch using the .train()

method. This method returns a double number proportional to the error. In turn,

.trainUntilConvergence() method allows for training the network until convergence. This

is presented in Listing 2.12. The last method returns a tuple containing the errors for

every training epoch.

Listing 2.11. Training with PyBrain.

>>> t r a i n e r . t r a i n ( )

0.31516384514375834
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Listing 2.12. Training until convergence t with PyBrain.

>>> t r a i n e r . t ra inUnt i lConvergence ( )

. . .

2.4.2. FANN

Fast Arti�cial Neural Network Library is a neural network library implemented in C. It is

open-source and free to use, even commercially, as it is licensed under LGPL. It is easy to

use, versatile, well documented, and fast. FANN has cross-platform execution in both �xed

and �oating point modes. It contains bindings to more than 20 programming languages, as

well as the graphical interface. The following section presents an example usage of FANN

with Python binding:

Preparing the dataset

A dataset for FANN library needs to be prepared in a separated �le, using a speci�c

format. Taking again XOR function as an example and assuming that -1 is a false value

and 1 indicated true, the �le saved as xor.data looks as in Listing 2.13. The explanation

of this format is following: the �rst line contains three numbers: number of samples,

number of input values for each sample and number of output values for each sample.

In the example above, there are 4 samples, 2 input values per sample and one output.

The rest of the �le contains samples, where the inputs are placed interchangeably with

target lines.

Listing 2.13. Dataset example with FANN.

4 2 1

−1 −1
−1
−1 1

1

1 −1
1

1 1

−1

Creating the network

Listing 2.14 illustrates a way of creating the neural network. The .neural_net() creates

the neural network. Each .create_sparse_array() creates the network's topology. In

this case the connection rate is 1, so each neuron from one layer is connected with each
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neuron in the consecutive one. Other parameters can be set too using appropriate setter

methods.

Listing 2.14. Creating the network using example parameters with FANN.

from pyfann import l i b f ann

connect ion_rate = 1

learn ing_rate = 0 .7

connect ion_rate = 1

learn ing_rate = 0 .7

num_input = 2

num_hidden = 4

num_output = 1

ann = l i b f ann . neural_net ( )

ann . create_sparse_array ( connect ion_rate , \

(num_input , num_hidden , num_output ) )

ann . se t_learn ing_rate ( l ea rn ing_rate )

ann . set_act ivat ion_funct ion_output ( \

l i b f ann .SIGMOID_SYMMETRIC_STEPWISE)

The training

The training part may be performed as presented in Listing 2.15. xor.data is the

previously saved dataset �le. The .save() method is used for saving trained network to

�le.

Listing 2.15. Training the network using example parameters with FANN.

des i r ed_er ro r = 0.0001

max_iterat ions = 100000

i te rat ions_between_report s = 1000

ann . t ra in_on_f i l e ( " xor . data" , max_iterations , \

i terat ions_between_reports , de s i r ed_er ro r )

ann . save ( "xor . net " )
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Activating the network

Listing 2.16 illustrates how to activate the neural network in order to calculate its

output. Just two simple methods are used in this case: .create_from_�le(), which

loads previously trained network from �le and .run(), which activates the networks.

The output of this run is 1, which is the correct answer.

Listing 2.16. Activating the network with FANN.

ann = l i b f ann . neural_net ( )

ann . c reate_from_f i l e ( "xor . net " )

print ann . run ( [ 1 , −1])
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CHAPTER 3

Review of experiments on summarization of Polish

Texts

This section covers experiments on automatic summarization for the Polish language, resulting

in theoretical works, as well as working implementations. All of them apply extractive methods

of summarization.

3.1. PolSum2 (S. Kulikow)

The �rst attempt at automatic text summarization for the Polish language was made by Ciura

et al. [2] and resulted in the PolSum system, which then evolved into PolSum2. The system

is still available at http://las.aei.polsl.pl/PolSum/. PolSum2 is an extractive system. It

performs various kinds of text analysis (morphological, syntactic, semantic) in order to extract

most important sentences from an input document. The system also recognizes anaphora,

which results in better coherence between selected sentences.

PolSum2 performs in three stages of summarizing[2]. The �rst stage, called `Calling remote

analyzer' is intended to call the remote server, which performs text analysis. The Linguistic

Analysis Server (LAS) is used for this purpose. This tool, created by the same authors,

performs linguistic analysis on the levels of: morphological, syntactic and semantic analysis.

The syntactic analysis builds a parse tree on the basis of Syntactic Group Grammar for Polish

(SGGP) [22]. The system also performs the analysis of anaphoric relations. The second

stage of summarization process is `Selecting the essential sentences'. There is no concrete

information on the criteria for sentence weighting. The last stage is called `linearization'. It is

designed to create coherent output. Proper forms of words are generated and placed in proper

places in sentence. The system also performs homonyms reduction and anaphora substitution

for better result reading.

The papers that describe the system do not provide any information about evaluation

results.

3.2. Lakon (A. Dudczak)

Adam Dudczak's Lakon is another automatic text summarization system created for the Polish

language [3]. It is available on-line at http://www.cs.put.poznan.pl/dweiss/research/
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lakon/. The system was developed as a result of author's Master Thesis, whose one of main

goals was to compare e�ectiveness of some popular extractive methods for the Polish language.

Three methods were developed. They were based on the following heuristics:

• tf × idf and Bm25 Okapi � assumes that words occurrence frequency determines the

sentence's salience

• sentence's position in text � assumes that most important sentences are often at the

beginning of paragraphs,

• lexical chain � assumes that relations across sentences determine their salience.

The system was evaluated on the corpus created from 10 manually summarized newspaper

articles. 60 volunteers manually created totally 285 summaries of these articles. Evaluation

results indicated that the most e�ective features were words occurrence frequency and sen-

tence's position. The lexical chains method was proved to be worse than the others.

3.3. Summarizer (J. �wietlicka)

�wietlicka's Summarizer [23] is the latest tool created for Polish. It is available on-line

at http://clip.ipipan.waw.pl/Summarizer. This solution is the most similar to the one

proposed here. It uses various machine learning methods for training an extractive summarizer

based on a set of sentence's features. These features include:

• LLR � Log Likelihood Ratio,

• tf × idf ,

• Sentence's centrality,

• Occurrence of characteristics phrases � bonus and stigma words, popularity of one or

two �rst words of a sentence,

• Similarity to the title � indicating occurrence of words from the title in a sentence,

• Number of words starting with uppercase � indicating Named Entities,

• Number of tokens that are not proper words � i.e. punctuation or numbers,

• Localization � position of the sentence in paragraphs and position of the sentence in

the whole text,

• Length of sentence,

• Length of paragraph,
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• Length of text,

• Type of sentence � based on the last token: declarative, interrogative, imperative.

A number of tests were performed on di�erent subsets of these features. The author of

the experiment used about 13 di�erent machine learning algorithms in order to compare their

e�ectiveness. The corpus was created by the author on her own and contains 102 newspaper

articles for training and 67 articles for evaluation.

�wietlicka's Summarizer also performs simple summary linearization. It consists of three

steps. Firstly, sentences are sorted in the order of their appearance in the document. Secondly,

fragments in parentheses are removed in order to make sentences shorter. Lastly, some special

words, such as therefore, moreover or however, are removed from the beginnings of sentences.

The discussed work contained the following conclusions:

• localization-based features, particularly sentence position in the paragraph and the

whole document, tend to be the most important ones,

• sentence centrality feature is also very e�ective,

• cue words feature are not so e�ective,

• machine learning algorithms tend to be an e�ective solution for automatic summariza-

tion. Using a set of features result in better quality than using each feature separately.
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CHAPTER 4

Polish Summaries Corpus

Polish Summaries Corpus is a resource created by Ogrodniczuk and Kope¢ in 2014 [16]. Its

aim is to provide a high quality corpus containing manual summarization examples. The

corpus forms a signi�cant facilitation for researchers, who can build their own summarization

tools based on this corpus, as well as evaluate them. Ogrodniczuk and Kope¢ notice that

previous works on automatic summarization in the Polish language lacked a common corpus

and a common evaluation method, therefore their results are not comparable.

Rzeczpospolita corpus � a collection of articles from the Web archive of a Polish newspa-

per [Weiss] was used as the base corpus for Polish Summaries Corpus. As stated by Ogroniczuk

and Kope¢ ( [16]), this corpus consists of 190 379 pseudo-HTML �les, dating from 1993 to

2002. Each �le in the corpus contains di�erent number of articles or even some non-textual

content. The Rzeczpospolita corpus has been made available by Presspublica, who are the

owners of the newspaper.

Polish Summaries Corpus contains 569 text documents divided into 7 categories: Society

and Politics, Sport, Economy, Culture news, Law, National news and Science and Technol-

ogy. All these texts have been manually summarized by independent annotators. All 569

documents have the extractive summaries and 154 have also the abstractive summaries. Size

of each category is presented in Table 4.1. For each document in the corpus 5 independent

propositions of summarization have been created. Each proposition of summarization con-

tains 3 summaries of a given text of the approximate length of 5%, 10%, 15% of the original,

respectively. The summaries are included in one another: 10% summary contains only frag-

ments from previously selected 20% summary and so on. Therefore, the extractive corpus size

is 8355 summaries.
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Text domain Abstractive summaries Extractive summaries

Social and political 22 393

Sport 22 36

Economy 22 34

Cultural news 22 32

Law 22 26

National news 22 24

Science and technology 22 24

Total 154 569

Table 4.1. Selected domains sizes (source: [16])
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CHAPTER 5

The proposed solution

The solution presented here implements sentence-based extractive summarization. It consists

of two main components: linguistic analysis and summarization application. The latter

component selects essential sentences and generates the result summary. The summarization

component applies neural networks as a machine learning algorithm. Its conceptual framework

is presented at Figure 1.2 in Chapter 1. Demonstration of the implemented system is available

at http://summar.pl/.

5.1. Methodology

This section provides a detailed description of the tasks performed by each component of the

system.

Linguistic analysis

The linguistic analysis component performs various kinds of text analysis. The input

document is processed into the internal model and transferred to the summarization

component. Most important natural language processing operations are performed by

PSI-Toolkit [9], which is an open source system, integrating di�erent NLP tools for the

Polish language. These operations include dividing input document into paragraphs,

sentences and tokens. Subsequently, lemmatization is performed and parts of speech are

determined. Named entities are recognized using the Named Entity Recognition tool

called NERf [25]. Lastly, short sentences, with no last punctuation mark are marked as

headers. The conceptual visualisation of the linguistic analysis pipeline is presented at

Figure 5.1

Summarization

The summarization component works as a three-stage process. These stage are:

1. Computation of feature values for each sentence in the document. This stage is

desired to translate the input sentence into the corresponding vector of features

values.

2. Sentence weighting based on the previously trained machine learning model and

these computed features. As a result of this stage, each sentence in document has a

weight, which indicates how worthy is this sentence to be included in the summary.
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Figure 5.1. Linguistic analysis pipeline.

3. Summary preparation according to the obtained sentences weights. The summary

contains of n sentences with the biggest weights, where n is the desired number

of sentences to be included. This stage includes the sorting of result sentences,

according to their order in the original document.

5.2. Description of features

This section describes each feature used in the system. Selection of the features was based on

literature [Lloret, 14, 12, 3, 23] as well as a few new ideas. The complete list of used features

includes:

TfIdf

It is a sum of term frequency � inverse document frequency (tf × idf) value for
every word in sentence. This measure is calculated for each word and is indicating the

importance of this world in the whole document. The ( 5.1) formula is used to calculate

tf × idf value.

tf × idf = tfw,d · idfw (5.1)

In fact, it is a product of two measures, which are:

term frequency (tf) � assumes that a measure of word's importance is the number

of its occurences in text. This measure in not su�cient on its own, because not all

frequently occurring words are important. There are many common words in text,

which are very frequent, such as prepositions or pronouns. To calculate tf value,

the ( 5.2) formula is used.

tfw,d =
nw,d∑
k nk,d

(5.2)
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In ( 5.3) nw,d is a number of occurrences of term tw in document dd and the

denominator indicates the number of occurrences of all terms in the document dd.

inverse document frequency (idf) � assumes that the most characteristic words

for a given document are these which are the least frequently occurring. This

measure is also not su�cient on its own, because rare words, like surnames, may

turn out to be too precise to put them in summary. To calculate this measure, we

use the ( 5.3) formula.

idfw = log
N

Nw
(5.3)

N indicates the number of all considered documents and Nw is a number of

documents containing the word w. In the case of summarization the sentence

scale is used.

Centrality

Centrality is the arithmetic average of the sentence's similarity to all other sentences

in the document. This measure assumes that the sentences that are the most similar

to the others best re�ect the content of the document. The ( 5.4) formula is used to

calculate the centrality.

centrality(s) =
1

N − 1

∑
x 6=s

sim(x, s) (5.4)

N is a number of sentences in the document and sim() refers to cosine similarity. If a

sentence is presented as a vector of tf × idf values of its subsequent words, the cosine

similarity represents the similarity between two sentences as a cosine of this vectors.

The ( 5.5) formula calculates the cosine similarity.

sim(s1, s2) =

∑
w∈s1,s2

tfw,s1tfw,s2(idfw)2√∑
w∈s1

(tfw,s1idfw)2 ×
√∑

w∈s2

tfw,s2idfw)2
(5.5)

When two sentences are identical, cosine similarity value is 1. On the other hand, if

there is no common word in two sentences, its value is 0.

Location Features

Location features are based on sentence's location in the document. They assume that

sentences with di�erent salience may occur in di�erent parts of the document. The

location features implemented in the experiment:

SentLocPara � position of a sentence in the paragraph: in the �rst, second or third

of equal parts,
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ParaLocSection � position of the paragraph in the document: in the �rst, second or

third of equal parts,

SentSpecialSection � occurrence in a special section such as the beginning (intro-

duction) or ending (conclusion) of document.

Part Of Speech Features

This features are based on the Part of Speech tags of the sentence's words. These

include:

Verb � existence of the �nal verb,

Nouns � number of nouns in sentence,

Pronouns � number of pronouns in sentence,

Named Entities Features

This features are based on the Named Entities recognized in the sentence. These include:

SentInHighestPname � number of Named Entities in the sentence as found by a

naive method, recognizing Named Entity as a word starting with capital letter,

NER � number of Named Entities in the sentence as found by NERf Named Entities

Recognition tool [25],

NERTf � sum of each Named Entity frequency in the whole document, occurring in

given sentence,

PersNameNE � number of recognized NE of the "person" type,

OrgNameNE � number of recognized NE of the "organization" type,

PlaceNameNE � number of recognized NE of the "place" type,

DateNE � number of recognized NE of the "date" type,

GeogNameNE � number of recognized NE of the "geography" type,

TimeNE � number of recognized NE of the "time" type.

Other Features

The other features include:

SentInHighestTitle � number of words from heading or title in the sentence,

ParaLength � paragraph length: short (up to 1 sentence), average (2�5 sentences)

or long (more than 5 sentences),

SentLength � sentence length: short (up to 7 words), average (7�14 words) or long

(more than 14 words),

AvWordLength � the average of words lengths in sentences,
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SentType � type of the sentences, based on its last punctuation mark: declarative,

interrogative or imperative.

MetaInfo � sentences not referring to the document content, i.e.: an information

about document's author or photo signatures.

It is worth noting that all the features are normalized. The features applied by the author

of this thesis, which were not mentioned in the referred works, are:

• MetaInfo,

• AvWordLength,

• Verb,

• Nouns,

• Pronouns,

• NER,

• NERTf,

• PersNameNE,

• OrgNameNE,

• PlaceNameNE,

• DateNE,

• GeogNameNE,

• TimeNE.
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CHAPTER 6

Evaluation

This chapter introduces methods aimed at evaluating automatic summarization systems.

Firstly, main issues are discussed. Next, evaluation methods used in the developed system

are described in detail. Lastly, the performed experiments and their results are presented.

6.1. Evaluation issues

Automatic summarization evaluation is not a trivial task. There exist a large number of

evaluation methods and metrics. However, there are some well recognized challenges, which

need to be considered by any evaluation method. These challenges include [13]:

• There are serious problem in determining the desired output in automatic summariza-

tion. An automatically generated summary may di�er from any human summary used

for evaluation and yet be considered as a good one.

• Human judgement may be required for some speci�c systems. That increases the

expense of an evaluation experiment and makes it not easily repeatable.

• Since summarization involves di�erent compression rates, which should be considered

in the evaluation process. This makes the evaluation task much more complex.

• Usually, the summarization method used in an information system takes into account

its desired application and user's needs. This should be considered in evaluation as well.

The most basic division of evaluation methods is the following:

Intrinsic

In the intrinsic evaluation methods, automatically generated summaries are compared

to the manually created reference summaries. There is an assumption that the bigger

is the overlap between these summaries, the better is automatically generated one.

Extrinsic

The extrinsic methods evaluate summaries based on a speci�c task. For example, human

may be asked to answer a set of question about the content of the original documents

on the basis of automatically generated, as well as human generated summaries. These

answers are then compared with each other, as well as with the answers based on the

original documents and then the quality of the system is determined.
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Figure 6.1. The taxonomy of summary evaluation measures (source: [21])

Figure 6.1 illustrates more speci�c summary evaluation taxonomy, as well as some

concrete methods [21]. Intrinsic methods measuring text quality are often assessed by

human annotators. In case of this thesis, the most important measures are grouped as the

intrinsic content evaluation. These methods are often based on comparison with an ideal

summary. They may be based on co-selection (compares ideal summary sentences with

automatically selected ones) or content-based (compares the actual words in sentences).

The extrinsic methods are usually task-based, which means that the used metrics refer to

performance of using the generated summaries for a certain task.

6.2. Evaluation methods

Precision/Recall

The common information retrieval metrics based on Precision and Recall measures

can be used to evaluate automatic summarization systems based on sentence-selection.

Automatically selected sentences are evaluated against the manually created summaries,

considered to be the gold standard. According to Nenkova and Keown ( [15]):

Recall refers to the fraction of sentences chosen by a human that were also correctly

identi�ed by the system. The ( 6.1) formula is used to calculate recall.

Recall =
|system-human select overlap|
|sentences selection by human|

(6.1)

Precision is the fraction of system sentences that were correct. The ( 6.2) formula is

used to calculate precision.

Precision =
|system-human select overlap|
|sentences selection by system|

(6.2)
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Lastly, the F-1 score is de�ned as the harmonic mean of precision and recall as shown

in the ( 6.3) formula.

F1 = 2 · precision · recall
precision+ recall

(6.3)

However, precision and recall measure are not the best choice for automatic summa-

rization evaluation, due to several important issues [15]. There is a high degree of

inconsistency in choosing sentences by di�erent annotators for the same text. Using

di�erent human extracts to evaluate summarization system may result in signi�cant

changes in precision/recall results, not corresponding to the actual system's quality.

Therefore, it seems that in case of automatic summarization evaluation recall might be

more adequate than precision. As Nenkova and Keown state in ( [15]): "Precision is

overly strict � some of the sentences chosen by the system might be good, even if they

have not been chosen by the gold standard creator. Recall, on the other hand, measures

the overlap with already observed sentence choices". Another issue refers to semantic

equivalence of di�erent sentences in text, which is very common in news. If the system

chooses one of equivalent sentences and human the other one, it is seen as a wrong

answer. Due to this issues more sophisticated metrics need to be introduced.

ROUGE

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation [10]. It was

introduced by Chin-Yew Lin at Document Understanding Conference (DUC) in 2004

and since then it has become the standard method for the evaluation of automatic

summarization systems. It provides a set of measures to automatically determine the

quality of summary in comparison to ideal summaries created by humans. The measure

is based on overlapping units such as n-grams, word sequences and word pairs. ROUGE

has been proved to be highly correlated with human judgements. This section describes

ROUGE-N methods, which were proved to work well in single document summarization

tasks.

Rouge-N =

∑
S∈{ReferenceSummaries}

∑
gramn∈S

Countmatch(gramn)

∑
S∈{ReferenceSummaries}

∑
gramn∈S

Count(gramn)
(6.4)

ROUGE-N is an n-gram recall between a candidate summary and a set of reference

summaries [10]. It is computed using the (6.4) formula, where n stands for the length

of the n-gram gramn, and Countmatch(gramn) is the maximum number of n-grams

co-occurring in a candidate summary and a set of reference summaries. It is worth

noting that the denominator of (6.4) increases if more than one reference documents are

used. Moreover, larger weight is assigned to matching n-grams occurring in multiple

references, so if words are shared by more references, ROUGE-N favors them.
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Kappa

Another important measure is the Cohen's kappa coe�cient, which is widely used in

the natural language processing annotation work [17]. In case of automatic summariza-

tion, it is used to measure agreement between annotators in a summary corpus. The

kappa coe�cient controls agreement P(A) by comparing the actual agreement compared

to random agreement P(E) [17]. It is calculated using the ( 6.5) formula.

K =
P (A)− P (E)

1− P (E)
(6.5)

Kappa increases with the degree of agreement among annotators, taking K = 1, when

the agreement is perfect. K = 0, when there is no agreement. In case of agreement

lower than the one expected by random, Kappa can also be negative. Its worth noting

that Cohen's kappa measures agreement between only two annotators.

Fleiss' kappa is a similar measure of agreement, used where there are more than two

annotators. It allows even that di�erent documents may be annotated by di�erent

annotators.

Let N be the number of sentences in the document, let n be the number of annotators,

who annotated the document, and let k be the number of possible categories into which

assignments are made (in this case there are two categories: "worthy" or "not worthy"

of being included in summary). Then, let nij be the number of annotators who assigned

the i-th sentence to the j-th category. To calculate Fleiss' kappa the following procedure

is used [4]:

1. Calculate pj , which is the proportion of all assignments which were to the j-th

category. It is calculated using the ( 6.6) formula.

pj =
1

Nn

N∑
i=1

nij (6.6)

2. Calculate Pi, which is the extent to which annotators agree for the i-th sentence.

It is calculated using the ( 6.7) formula.

Pi =
1

n(n− 1)
[(

k∑
j=1

n2ij)− n] (6.7)

3. Compute P (A), the mean of the Pi 's, using the ( 6.8) formula and compute P (E),

using the ( 6.9) formula.

P (A) =
1

N

N∑
i=1

Pi (6.8)

P (E) =

k∑
j=1

p2j (6.9)
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4. Calculate the kappa coe�cient using calculated P (A) and P (E) and the ( 6.5)

formula.

In case of automatic summarization evaluation kappa coe�cient may by be used as a

metric. Let k be the number of manually created references. Measure of agreement

among k annotators is considered as a baseline. During evaluation a random reference

summary is replaced with automatically generated summary and the new value of kappa

is calculated. This allows to determine the impact of the automatically generated

summary on the measure of agreement.

6.3. Experiments and Results

A number of experiments were performed in order to evaluate results. PyBrain and FANN

were used as neural networks libraries. Di�erent subsets of features were used in order to

achieve the best results in summarization. These subsets are presented in the Table 6.1.

Therefore, every experiment was performed on a combination of Sub1 or Sub2 with one of

Ner subsets.

Subset

Name

Features

Sub1 {TfIdf, ParaLength, Centrality, SentType, SentSpecialSection, SentIn-

HighestTitle, SentLength, SentLocPara, ParaLocSection}

Sub2 Sub1 ∪ {Pronouns, MetaInfo, Verb, Nouns, AvWordLength}

Ner1 {SentInHighestPname}

Ner2 {NER, NERTf}

Ner3 {OrgNameNe, GeogNameNe, DateNe, PlaceNameNe, PersNameNe,

TimeNe}

Table 6.1. Subsets of features used in experiments.

Each learned model for each feature subset was evaluated with three di�erent methods.

These include:

• ROUGE (i.e. ROUGE-1, ROUGE-2, ROUGE-3),

• Precision and Recall,

• Kappa coe�cient.

Two baselines were used as a useful reference point for comparison of results:
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RANDOM � random summarization,

FIRST � �rst n sentences are considered as a summary, where n is desired summary length,

Additionally, Kappa coe�cient was used as a human upper bound. Therefore, agreement

between annotators in the test corpus is considered as an optimum, for which agreement

between computer generated summary and human references should be as close as possible.

Parameters for each neural network library were selected individually in order to achieve

the best results. Di�erent combinations of parameters were tried. Evaluation results presented

in this thesis are calculated for the best attempted combination. These are as follows:

PyBrain

Activation function: logistic function

Number of hidden layers: 1

Number of neurons per layer: 450

Number of epochs: 1

Learning rate: 0.0005

Momentum: 0.99

FANN

Activation function: logistic function

Number of hidden layers: 1

Number of neurons per layer: 20

Number of epochs: 100

Learning rate: 0.7

Momentum: 0.99

There are several signi�cant di�erences between parameters combination for each library.

Firstly, PyBrain was con�gured to perform only 1 training iteration, where FANN needed

as much as 100 iterations to draw stable results. Secondly, the learning rate is much higher

in case of FANN. Training with many iterations performed better with learning rate of 0.7.

Lastly, using any more than 20 neurons in hidden layers for the FANN library did not resulted

with signi�cantly better results. In case of PyBrain, in order to achieve better performance

up to 450 neurons were needed.

Evaluation results for ROUGE measure for the PyBrain library are shown in Table 6.2.

These results can be summed up as follows:
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1. Almost every subset of features used in experiments gave quite similar results in

ROUGE, which were about 15% better than the RANDOM baseline and only a few

percent better than the FIRST baseline, according to the F-1 score.

2. For the RANDOM baseline, ROUGE-2 and ROUGE-3 scores have decreased signi�-

cantly, compared to ROUGE-1. For FIRST baseline and experiment's results this scores

where more stable for each ROUGE-1, ROUGE-2 and ROUGE-3 scores.

3. No feature subset performed clearly better than the others.

4. Feature subsets, which used naive NER method (Ner1 ) more often reached the best

result, than the subsets, which used more sophisticated NER methods (Ner2 or Ner3 ).

5. Feature subsets without NER information included (Sub1 and Sub2 ) did not fare much

worse than feature subset with NER information included.

6. Sub1 ∪ Ner2 feature subset gave the worst result among all.

7. Using the bigger feature subset Sub2 gave more stable evaluation results according to

ROUGE-2 and ROUGE-3 compared to ROUGE-1.

Evaluation results for ROUGE measure for FANN library are shown in Table 6.3. These

results can be summed up as follows:

1. The results achieved using the FANN library seem to be slightly higher than the ones

achieved using PyBrain according to ROUGE measure.

2. Almost every subset of features used in experiments gave quite similar results in

ROUGE.

3. Experiments using FANN library seem also to con�rm that using naive NER method

gives slightly better evaluation results.

4. Feature subsets without NER information included (Sub1 and Sub2 ) still have very high

evaluation results.

5. There is no subset, which performed much worse than the others according to the

ROUGE measure.

6. The best results were achieved for the Sub1 ∪ Ner1, as well as Sub2 ∪ Ner1 feature

sets.

7. The results are nearly the same according to ROUGE-2 and ROUGE-3 measures, no

matter of the subset used.
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ROUGE-1 ROUGE-2 ROUGE-3

R P F-1 R P F-1 R P F-1

RANDOM 0.29 0.34 0.30 0.14 0.17 0.15 0.13 0.15 0.13

FIRST 0.36 0.50 0.41 0.28 0.37 0.31 0.27 0.36 0.30

Sub1 0,46 0,44 0,44 0,35 0,32 0,33 0,34 0,31 0,32

Sub1 ∪ Ner1 0,50 0,43 0,46 0,38 0,32 0,34 0,38 0,31 0,34

Sub1 ∪ Ner2 0,47 0,39 0,42 0,33 0,26 0,29 0,32 0,25 0,28

Sub1 ∪ Ner3 0,49 0,43 0,45 0,37 0,31 0,34 0,37 0,30 0,33

Sub2 0,48 0,43 0,45 0,37 0,32 0,34 0,36 0,31 0,33

Sub2 ∪ Ner1 0,49 0,44 0,46 0,38 0,32 0,34 0,37 0,31 0,33

Sub2 ∪ Ner2 0,48 0,44 0,45 0,36 0,32 0,34 0,36 0,31 0,33

Sub2 ∪ Ner3 0,49 0,43 0,45 0,38 0,31 0,34 0,37 0,30 0,33

Table 6.2. ROUGE evaluation results for PyBrain. R = Recall, P = Precision

ROUGE-1 ROUGE-2 ROUGE-3

R P F-1 R P F-1 R P F-1

RANDOM 0.29 0.34 0.30 0.14 0.17 0.15 0.13 0.15 0.13

FIRST 0.36 0.50 0.41 0.28 0.37 0.31 0.27 0.36 0.30

Sub1 0,51 0,43 0,47 0,40 0,32 0,35 0,39 0,31 0,34

Sub1 ∪ Ner1 0,52 0,43 0,47 0,41 0,32 0,35 0,40 0,31 0,35

Sub1 ∪ Ner2 0,51 0,43 0,46 0,39 0,32 0,35 0,39 0,31 0,34

Sub1 ∪ Ner3 0,51 0,43 0,46 0,39 0,32 0,35 0,38 0,31 0,34

Sub2 0,50 0,44 0,46 0,39 0,32 0,35 0,38 0,31 0,34

Sub2 ∪ Ner1 0,51 0,44 0,47 0,40 0,33 0,36 0,39 0,32 0,35

Sub2 ∪ Ner2 0,51 0,43 0,46 0,40 0,32 0,35 0,39 0,31 0,34

Sub2 ∪ Ner3 0,50 0,44 0,46 0,39 0,33 0,35 0,38 0,32 0,34

Table 6.3. ROUGE evaluation results for FANN. R = Recall, P = Precision
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Evaluation results for Precision and Recall measure for PyBrain are presentend in Table

6.4. These results can be summed as follows:

1. Precision and Recall seem to be much less sensitive measure than ROUGE. All results

are almost the same in this experiment.

2. Sub1 ∪ Ner2 feature subset still gave the worst result.

3. Sub2 ∪ Ner1 performed the best among all.

Evaluation results for Precision and Recall measure for the FANN library are shown in

Table 6.5. These results can be summed up as follows:

1. The results achieved using the FANN library seem to be slightly higher than the ones

achieved using PyBrain according to Precision and Recall measure.

2. Precision and Recall measure are almost the same for di�erent subsets. Therefore, as

in PyBrain experiments, this measure seems to be much less sensitive than ROUGE.

3. There is no feature subset, which performed signi�cantly worse than the others.

4. Including NER information does not change the results.

R P F-1

RANDOM 0.29 0.34 0.30

FIRST 0.36 0.50 0.41

Sub1 0,29 0,27 0,27

Sub1 ∪ Ner1 0,28 0,27 0,27

Sub1 ∪ Ner2 0,23 0,22 0,22

Sub1 ∪ Ner3 0,29 0,27 0,27

Sub2 0,28 0,27 0,27

Sub2 ∪ Ner1 0,29 0,27 0,28

Sub2 ∪ Ner2 0,29 0,27 0,27

Sub2 ∪ Ner3 0,28 0,27 0,27

Table 6.4. Precision and Recall evaluation results for PyBrain. R = Recall, P = Precision

Kappa evaluation results for PyBrain are shown in Table 6.6. These results can be summed

as follows:

1. Kappa evaluation results are also nearly the same in this experiment.

2. All results are very close to the kappa upper bound.
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R P F-1

RANDOM 0.29 0.34 0.30

FIRST 0.36 0.50 0.41

Sub1 0,31 0,29 0,29

Sub1 ∪ Ner1 0,31 0,29 0,29

Sub1 ∪ Ner2 0,30 0,28 0,28

Sub1 ∪ Ner3 0,30 0,29 0,29

Sub2 0,30 0,29 0,29

Sub2 ∪ Ner1 0,31 0,29 0,29

Sub2 ∪ Ner2 0,30 0,28 0,29

Sub2 ∪ Ner3 0,30 0,28 0,29

Table 6.5. Precision and Recall evaluation results for FANN. R = Recall, P = Precision

3. Just as in previous experiments, Sub1 ∪ Ner2 feature subset gave the worst result

among all.

4. The di�erence between best obtained results and the kappa upper bound is only 0.02.

This means that agreement between human references and computer generated sum-

maries is almost the same as the agreement between only human references.

Kappa evaluation results for the FANN library are shown in Table 6.7. These results can

be summed up as follows:

1. The results obtained using the FANN library seem to be slightly higher than the ones

achieved using PyBrain according to kappa measure.

2. The results obtained using the Fann Library are also quite closer to the kappa upper

bound.

3. There is no subset, which performed signi�cantly worse than the others.

4. The di�erence between these results and the kappa baseline is only 0.02 in as much as

4 cases.

5. Sub2 ∪ Ner1 feature set performed the best, achieving the kappa value of 0,27.
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Kappa

Human 0.28

Sub1 0,25

Sub1 ∪ Ner1 0,25

Sub1 ∪ Ner2 0,23

Sub1 ∪ Ner3 0,26

Sub2 0,25

Sub2 ∪ Ner1 0,25

Sub2 ∪ Ner2 0,26

Sub2 ∪ Ner3 0,25

Table 6.6. Kappa evaluation results for PyBrain.

Kappa

Human 0.28

Sub1 0,25

Sub1 ∪ Ner1 0,26

Sub1 ∪ Ner2 0,25

Sub1 ∪ Ner3 0,26

Sub2 0,26

Sub2 ∪ Ner1 0,27

Sub2 ∪ Ner2 0,26

Sub2 ∪ Ner3 0,25

Table 6.7. Kappa evaluation results for FANN.
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CHAPTER 7

Summary

The experiments carried out in the area of automatic summarization for the Polish language

preformed in this thesis are summarized in this chapter. Conclusions from the experiments

are presented and possible paths of development are be pointed out.

7.1. Conclusions from the experiments

In this thesis, a document summarizing approach for the Polish language has been presented.

It is based on sentence extraction and applies neural networks as a machine learning algorithm.

This approach seems to be promising in achieving an acceptable summarizing method for the

Polish language, however there are some di�culties in choosing the proper features set and

tuning machine learning algorithm. Several conclusions may be drawn from this experiment,

which may be helpful in future research. These conclusions include:

1. The basic set of features, which includes: tf×idf , centrality, location features, paragraph
and sentence length, sentence type and title keywords, seems to be su�cient in achieving

satisfactory results. However, using more features, like Part Of Speech tags, resulted

in better results while examining longer n-grams in ROUGE. That suggests it is worth

using larger feature sets.

2. Using as a feature a number of Named Entities in the sentence as found by a naive

method (which recognizes Named Entity as a word starting with capital letter), seems

to be su�cient in machine learning task. Using sophisticated NER methods seems

pointless.

3. The Kappa coe�cient evaluation method used in experiments gives very valuable infor-

mation about the automatic summarization system. It turns out that a set of human

summaries containing one computer generated summary seems to have almost the same

agreement measure as a set of summaries, which are entirely made by human. The

other methods have evaluated the computer generated summary compared to the gold

standard, which is some ideal summary concluded from all references.

4. Precision and Recall measures do not seem to be very good evaluation methods in case

of automatic summarization, because they do not di�erentiate results of experiments.
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7.2. Possible paths of development

There is still much work to do in the �eld. The list of interesting considerations for the future

research at the task of automatic summarization for Polish is listed below.

1. There is still need to develop new features, which would improve machine learning.

One of possible path is to develop simpler features, for example binary features, which

would contain only one information (yes/no) or features containing clear, not processed

information, like index of the sentence in document. Such features may be more useful

for training algorithm.

2. Other machine learning algorithms should be examined as well. Especially, some simpler

algorithms, like linear regression should be used. Using linear regression instead of

neural networks may be also useful for determining the impact of single features on the

learning process. In case of neural networks determining the impact of single features

is not possible, because of the algorithm's complicated structure.

3. Dividing the corpus may give some better evaluation results. One possible direction

is to choose documents form corpus, which have the biggest agreement measure and

use them as the dataset for training. Another idea is to perform di�erent trainings for

di�erent categories of documents.

4. The presented attempt may serve as the baseline for future solutions, as it is the �rst

summarization project evaluated against the Polish Summaries Corpus, the standardized

corpus of summaries for the Polish language.
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